【題目】如圖,在ABCD中,∠ABD的平分線BE交AD于點(diǎn)E,∠CDB的平分線DF交BC于點(diǎn)F.求證:△ABE≌△CDF.

【答案】證明:□ABCD中,AB=CD,∠A=∠CAB∥CD ∴∠ABD=∠CDB

∵∠ABE=∠ABD,∠CDF=∠CDB ∴∠ABE=∠CDF

△ABE△CDF

∴△ABE≌△CDF

【解析】試題分析:首先根據(jù)角平分線性質(zhì)與平行線性質(zhì)證明∠ABD=CDB,再根據(jù)平行四邊形性質(zhì)證出CD=AB,A=C,可利用ASA定理判定△ABE≌△CDF

試題解析:

在平行四邊形ABCD中,ABCD,AC

ABCD∴∠ABDCDB

BE平分∠ABD,DF平分∠CDB,

∴∠ABEABD,CDFCDB

∴∠ABECDF

在△ABE和△CDF中,

∵∠ACABCDABECDF,

∴△ABE≌△CDF

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖, 在東西方向的海岸線MN上有相距10海里的A、B兩艘船,均收到已觸礁擱淺的船P的求救信號(hào),已知船P在船A的北偏東60°方向上,船P在船B的北偏西45°方向上.求船P到海岸線MN的距離(結(jié)果保留根號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1所示,在正方形ABCD中,AB=1, 是以點(diǎn)B為圓心,AB長為半徑的圓的一段弧,點(diǎn)E是邊AD上的動(dòng)點(diǎn)(點(diǎn)E與點(diǎn)A,D不重合),過E作所在圓的切線,交邊DC于點(diǎn)F,G為切點(diǎn).

(1)求證:EA=EG;

(2)設(shè)AE=x,F(xiàn)C=y,求y關(guān)于x的函數(shù)關(guān)系式,并直接寫出x的取值范圍;

(3)如圖2所示,將△DEF沿直線EF翻折后得△D1EF,連接AD1,D1D,試探索:當(dāng)點(diǎn)E運(yùn)動(dòng)到何處時(shí),△AD1D與△ED1F相似?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A(0,1),M(3,2),N(4,4).動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿軸以每秒1個(gè)單位長的速度向上移動(dòng),且過點(diǎn)P的直線l:y=-x+b也隨之移動(dòng),設(shè)移動(dòng)時(shí)間為t秒.

(1)當(dāng)t=3時(shí),求l的解析式;
(2)若點(diǎn)M,N位于l的異側(cè),確定t的取值范圍;
(3)直接寫出t為何值時(shí),點(diǎn)M關(guān)于l的對(duì)稱點(diǎn)落在坐標(biāo)軸上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一塊邊長為4的正方形ABCD,將一塊足夠大的直角三角板如圖放置, CB延長線與直角邊交于點(diǎn)E.則四邊形AECF的面積是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在平面直角坐標(biāo)系中,點(diǎn)A(﹣3,﹣1)、B(﹣2,﹣4)、C(﹣6,﹣5),以原點(diǎn)為位似中心將△ABC縮小,位似比為1:2,則點(diǎn)B的對(duì)應(yīng)點(diǎn)的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)D是等邊△ABCBC邊上一點(diǎn),過點(diǎn)D分別作DE∥AB,DF∥AC,交AC,ABEF,連接BE,CF,分別交DF,DE于點(diǎn)N,M,連接MN.試判斷△DMN的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=8,BC=4,將矩形沿AC折疊,點(diǎn)D落在D′處,則重疊部分△AFC的面積是(
A.8
B.10
C.20
D.32

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于, 兩點(diǎn).

)試確定上述反比例函數(shù)和一次函數(shù)的表達(dá)式.

)求的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案