精英家教網 > 初中數學 > 題目詳情

已知二次函數y=ax2+bx+c(a≠0)的圖象如圖所示,有下列結論:
①a>0,b>0;②c<0,△<0;③c-4b>0;④4a-2b+c=16a+4b+c
其中正確結論的個數是________.

③④
分析:由拋物線的開口方向判斷a的符號,由拋物線與y軸的交點判斷c的符號,然后根據對稱軸及拋物線與x軸交點情況進行推理,進而對所得結論進行判斷.
解答:由拋物線的開口方向向上可推出a>0;
因為對稱軸在y軸右側,對稱軸為x=>0,
又因為a>0,
∴b<0;
由拋物線與y軸的交點在y軸的負半軸上,
∴c<0,
由拋物線與x軸有兩個交點可以推出△=b2-4ac>0.
由圖象可知:對稱軸x==1,
∴b=-2a,
由圖象可知:當x=-1時y=0,
∴a-b+c=0,c=-a+2b=-a-2a=-3a,
∴c-4b=-3a+8a=5a>0,
∴4a-2b+c=4a-6a+4b+c=16a+4b+c,
∴③、④正確.
故答案為:③④.
點評:主要考查圖象與二次函數系數之間的關系,會利用對稱軸的范圍求2a與b的關系,以及二次函數與方程之間的轉換,根的判別式的熟練運用.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

21、已知二次函數y=a(x+1)2+c的圖象如圖所示,則函數y=ax+c的圖象只可能是( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知二次函數y=ax+bx+c的圖象與x軸交于點A.B,與y軸交于點 C.

(1)寫出A. B.C三點的坐標;(2)求出二次函數的解析式.

查看答案和解析>>

科目:初中數學 來源:2013-2014學年廣東省廣州市海珠區(qū)九年級上學期期末數學試卷(解析版) 題型:選擇題

已知二次函數y=ax²+bx+c(a≠0)的圖像如圖所示,則下列結論中正確的是(   )

A.a>0             B.3是方程ax²+bx+c=0的一個根

C.a+b+c=0          D.當x<1時,y隨x的增大而減小

 

查看答案和解析>>

科目:初中數學 來源: 題型:填空題

已知二次函數y=ax+bx+c(a≠0,a,b,c為常數),對稱軸為直線x=1,它的部分自變量與函數值y的對應值如下表,寫出方程ax2+bx+c=0的一個正數解的近似值________(精確到0.1).
x-0.1-0.2-0.3-0.4
y=ax2+bx+c-0.58-0.120.380.92

查看答案和解析>>

科目:初中數學 來源: 題型:

已知二次函數y=ax²+bx+c(c≠0)的圖像如圖4所示,下列說法錯誤的是:

(A)圖像關于直線x=1對稱

(B)函數y=ax²+bx+c(c ≠0)的最小值是 -4

(C)-1和3是方程ax²+bx+c=0(c ≠0)的兩個根

(D)當x<1時,y隨x的增大而增大

查看答案和解析>>

同步練習冊答案