13.已知關(guān)于x的方程2x+5=1和a(x+3)=$\frac{1}{2}$a+x的解相同,求a2-$\frac{a}{2}$+1的值.

分析 分別解出兩方程的解,兩解相等,就得到關(guān)于a方程,從而可以求出a值,再根據(jù)代數(shù)式求值,可得答案.

解答 解:由2x+5=1,得x=-2,
由a(x+3)=$\frac{1}{2}$a+x,得x=-$\frac{5a}{2(a-1)}$.
由關(guān)于x的方程2x+5=1和a(x+3)=$\frac{1}{2}$a+x的解相同,得
-$\frac{5a}{2(a-1)}$=-2.
解得a=-4.
當(dāng)a=-4時(shí),a2-$\frac{a}{2}$+1=(-4)2+2+1=19.

點(diǎn)評(píng) 本題考查了同解方程,本題解決的關(guān)鍵是能夠求解關(guān)于x的方程,要正確理解方程解的含義.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

3.如圖,AB⊥BC,AD⊥DC,∠BAD=100°,在BC、CD上分別找一點(diǎn)M、N,當(dāng)△AMN的周長(zhǎng)最小時(shí),∠AMN+∠ANM的度數(shù)是160°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

4.計(jì)算
(1)2+(-3)+(-5)
(2)-12016-(1-0.5)÷3×[3-(-3)2].

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

1.函數(shù)y=2(x-4)2+5的頂點(diǎn)坐標(biāo)為(4,5).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

8.如圖,BC⊥CA,BC=CA,DC⊥CE,DC=CE,直線BD與AE交于點(diǎn)F,交AC于點(diǎn)G,連接CF.
(1)求證:△ACE≌△BCD;
(2)求證:BF⊥AE;
(3)請(qǐng)判斷∠CFE與∠CAB的大小關(guān)系并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.下列說(shuō)法中:
①相反數(shù)等于本身的數(shù)只有0;
②絕對(duì)值等于本身的數(shù)是正數(shù);
③-$\frac{3ab}{5}$的系數(shù)是3;
④將式子x-2=-y變形得:x-y=3;
⑤若$\frac{a}=\frac{4}{7}$,則4a=7b;
⑥幾個(gè)有理數(shù)的積是正數(shù),則負(fù)因數(shù)的個(gè)數(shù)一定是偶數(shù),
錯(cuò)誤的有(  )個(gè).
A.2B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

5.如圖1,在正方形ABCD中,P是對(duì)角線BD上的點(diǎn),點(diǎn)E在AB上,且PA=PE.
(1)求證:PC=PE;
(2)求∠CPE的度數(shù);
(3)如圖2,把正方形ABCD改為菱形ABCD,其他條件不變,試探究∠CPE與∠ABC之間的數(shù)量關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

2.如圖,△ABC中,AC=BC,點(diǎn)D在BC上,作∠ADF=∠B,DF交外角∠ACE的平分線CF于點(diǎn)F.
(1)求證:CF∥AB;
(2)若∠CAD=20°,求∠CFD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

3.解下列方程組:
(1)$\left\{\begin{array}{l}{3x-2y=1}\\{2x+3y=-7}\end{array}\right.$
(2)$\left\{\begin{array}{l}{0.5x+0.7y=35}\\{x+0.4y=40}\end{array}\right.$.

查看答案和解析>>

同步練習(xí)冊(cè)答案