在同一直角坐標系中反比例函數(shù)y=的圖象與一次函數(shù)y=kx+b的圖象相交,且其中一個交點A的坐標為(-2,3),若一次函數(shù)的圖象又與x軸相交于點B,且△AOB的面積為6(點O為坐標原點).求一次函數(shù)與反比例函數(shù)的解析式.

y=-x+2或y=x+6   y=-

解析解:將點A (-2,3)代入y=中得:3=,
∴m=-6.∴反比例函數(shù)的解析式為y=-.
又∵△AOB的面積為6,∴|OB|·|yA|=6.
|OB|·3=6,∴|OB|=4.
∴B點坐標為(4,0)或(-4,0).
①當B(4,0)時,又∵點A(-2,3)是兩函數(shù)圖象的交點,
∴代入y=kx+b中得,
解得.
∴y=-x+2.
②當B(-4,0)時,又∵點A(-2,3)是兩函數(shù)圖象的交點,
∴代入y=kx+b中得
解得
∴y=x+6.
綜上所述,一次函數(shù)的解析式為y=-x+2或y=x+6.反比例函數(shù)的解析式為y=-

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:解答題

如圖,已知反比例函數(shù))與一次函數(shù) ()相交于A、B兩點,AC⊥軸于點C.若△OAC的面積為1,且tan∠AOC=2.
(1)求出反比例函數(shù)與一次函數(shù)的解析式;
(2)請直接寫出B點的坐標,并指出當為何值時,反比例函數(shù)的值大于一次函數(shù)的值?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

書生中學小賣部工作人員到路橋批發(fā)部選購甲、乙兩種品牌的文具盒,乙品牌的進貨單價是甲品牌進貨單價的2倍,考慮各種因素,預計購進乙品牌文具盒的數(shù)量(個)與甲品牌文具盒數(shù)量(個)之間的函數(shù)關系如圖所示,當購進的甲、乙品牌的文具盒中,甲有120個時,購進甲、乙品牌文具盒共需7 200元.
(1)根據(jù)圖象,求之間的函數(shù)關系式;
(2)求甲、乙兩種品牌的文具盒進貨價;
(3)若小賣部每銷售1個甲種品牌的文具盒可獲利4元,每銷售1個乙種品牌的文具盒可獲利9元,根據(jù)學校后勤部決定,準備用不超過6 300元購進甲、乙兩種品牌的文具盒,且這兩種文具盒全部售出后獲利不低于1 795元,問小賣部工作人員有幾種進貨方案?哪種進貨方案能使獲利最大?最大獲利為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

周末,小明騎自行車從家里出發(fā)到野外郊游.從家出發(fā)0.5小時后到達甲地,游玩一段時間后按原速前往乙地,小明離家1小時20分鐘后,媽媽駕車沿相同路線前往乙地,如圖是他們離家的路程y(km)與小明離家時間x(h)的函數(shù)圖象,已知媽媽駕車的速度是小明騎車速度的3倍.

(1)求小明騎車的速度和在甲地游玩的時間;
(2)小明從家出發(fā)多少小時后被媽媽追上?此時離家多遠?
(3)若媽媽比小明早10分鐘到達乙地,求從家到乙地的路程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,已知反比例函數(shù)y1 (k1>0)與一次函數(shù)y2=k2x+1(k2≠0)相交于A、B兩點,AC⊥x軸于點C.若△OAC的面積為1,且tan∠AOC=2.

(1)求出反比例函數(shù)與一次函數(shù)的解析式;
(2)請直接寫出B點的坐標,并指出當x為何值時,反比例函數(shù)y1的值大于一次函數(shù)y2的值?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖所示,一次函數(shù)y=k1x+b與反比例函數(shù)y=(x<0)的圖象相交于A,B兩點,且與坐標軸的交點為(–6,0),(0,6),點B的橫坐標為–4.

(1)試確定反比例函數(shù)的解析式;
(2)求△AOB的面積;
(3)直接寫出不等式k1x+b>的解.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,直線y=-2x+8交x軸于A,交y軸于B i點p在線段AB上,過點P分別向x軸、y軸引垂線,垂足為C、D,設點P的橫坐標為m,矩形PCOD的面積為S.

(1)求S與m的函數(shù)關系式; (2)當m取何值時矩形PCOD的面積最大,最大值是多少.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

在同一直角坐標系中畫出下列函數(shù)的圖象:.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

在一次蠟燭燃燒試驗中,甲、乙兩根蠟燭燃燒時剩余部分的高度y(厘米)與燃燒時間x(小時)之間的關系如圖所示,請根據(jù)圖象所提供的信息解答下列問題:

(1)甲、乙兩根蠟燭燃燒前的高度分別是         , 從點燃到燃盡所用的時間分別                。
(2)分別求甲、乙兩根蠟燭燃燒時y與x之間的函數(shù)關系式;
(3)燃燒多長時間時,甲、乙兩根蠟燭的高度相等(不考慮都燃盡時的情況)?在什么事件段內,甲蠟燭比乙蠟燭高?在什么時間段內,甲蠟燭比乙蠟燭低?

查看答案和解析>>

同步練習冊答案