你能用尺規(guī)作出一個(gè)45°的角嗎?

答案:
解析:

提示:先作一個(gè)90°的角,再平分它;也可以作一個(gè)等腰直角三角形.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

23、如圖,⊙O表示一圓形紙板,根據(jù)要求,需通過(guò)多次剪裁,把它剪成若干個(gè)扇形面.操作過(guò)程如下:第1次剪裁,將圓形紙板等分為4個(gè)扇形;第2次剪裁,將上次得到的扇形面中的一個(gè)再等分成4個(gè)扇形;以后按第2次剪裁的作法進(jìn)行下去.
(1)請(qǐng)你在⊙O中,用尺規(guī)作出第2次剪裁后得到的7個(gè)扇形(保留痕跡,不寫(xiě)作法)
(2)請(qǐng)你通過(guò)操作和猜想,將第3、第4和第n次裁剪后所得扇形的總個(gè)數(shù)(s)填入下表.
等分圓及扇形面的次數(shù)(n) 1 2 3 4 n
所得扇形的總個(gè)數(shù)(S) 4 7
(3)請(qǐng)你推斷,能不能按上述操作過(guò)程,將原來(lái)的圓形紙板剪成33個(gè)扇形?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•保定二模)定義:如果一條直線把一個(gè)面圖形的面積分成相等的兩部分,我們把這條直線稱(chēng)為這個(gè)平面圖形的一條面積等分線.
如圖1,AD是△ABC的中線,則有S△ADC=S△ABD,所以直線AD就是△ABC的一條面積等分線.
探究:
(1)如圖2,梯形ABCD中,AB∥DC,連接AC,過(guò)B點(diǎn)作BE∥AC交DC的延長(zhǎng)線于點(diǎn)E,連接AE,那么有S△AED=S梯形ABCD,請(qǐng)你給出這個(gè)結(jié)論成立的理由;
(2)在圖2中,過(guò)點(diǎn)A用尺規(guī)作出梯形ABCD的面積等分線(不寫(xiě)作法,保留作圖痕跡);
類(lèi)比:
(3)如圖3,四邊形ABCD中,AB與CD不平行,過(guò)點(diǎn)A能否畫(huà)出四邊形ABCD的面積等分線?若能,請(qǐng)畫(huà)出面積等分線,并給出證明;若不能,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:1+1輕巧奪冠·優(yōu)化訓(xùn)練(冀教版)七年級(jí)數(shù)學(xué)(下) 冀教版銀版 題型:068

你能用尺規(guī)作一個(gè)直角三角形,使其兩條直角邊分別等于已知線段a,b嗎?

要求:

(1)寫(xiě)出已知,求作;

(2)設(shè)計(jì)出作三角形的步驟;

(3)按你設(shè)計(jì)的步驟完成作圖后,和同伴交流,比較作圖方法是否相同,作出的三角形是否全等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2002年全國(guó)中考數(shù)學(xué)試題匯編《圓》(14)(解析版) 題型:解答題

(2002•濟(jì)南)如圖,⊙O表示一圓形紙板,根據(jù)要求,需通過(guò)多次剪裁,把它剪成若干個(gè)扇形面.操作過(guò)程如下:第1次剪裁,將圓形紙板等分為4個(gè)扇形;第2次剪裁,將上次得到的扇形面中的一個(gè)再等分成4個(gè)扇形;以后按第2次剪裁的作法進(jìn)行下去.
(1)請(qǐng)你在⊙O中,用尺規(guī)作出第2次剪裁后得到的7個(gè)扇形(保留痕跡,不寫(xiě)作法)
(2)請(qǐng)你通過(guò)操作和猜想,將第3、第4和第n次裁剪后所得扇形的總個(gè)數(shù)(s)填入下表.
等分圓及扇形面的次數(shù)(n)1234n
所得扇形的總個(gè)數(shù)(S)47
(3)請(qǐng)你推斷,能不能按上述操作過(guò)程,將原來(lái)的圓形紙板剪成33個(gè)扇形?為什么?

查看答案和解析>>

同步練習(xí)冊(cè)答案