【題目】如圖,在正方形紙片中,對(duì)角線交于點(diǎn),折疊正方形紙片,使落在上,點(diǎn)恰好與上的點(diǎn)重合.展開后,折痕分別交、于點(diǎn)、.連接.下列結(jié)論:①;②;③;④四邊形是菱形;⑤

其中正確結(jié)論的序號(hào)是(  。

A. ①②③④⑤B. ①②③④C. ①③④⑤D. ①④⑤

【答案】D

【解析】

①根據(jù)折疊的性質(zhì)我們能得出∠ADG=ODG,也就求出了∠ADG的度數(shù),那么在三角形AGD中用三角形的內(nèi)角和即可求出∠AGD的度數(shù);

②根據(jù)AE=EFBEAEAB,∴tanAED=2,

③根據(jù)△AGD與△OGD同高不等底,即可判斷;

④根據(jù)同位角相等得到EFAC,GFAB,由折疊的性質(zhì)得出AE=EF,即可判定四邊形AEFG是菱形;

⑤通過相似三角形DEFDOG得出EFOG的比例關(guān)系,然后再在BEF中求出BEEF的關(guān)系,進(jìn)而求出BEOG的關(guān)系.

解:因?yàn)樵谡叫渭埰?/span>ABCD中,折疊正方形紙片ABCD,使AD落在BD上,點(diǎn)A恰好與BD上的點(diǎn)F重合,所以∠GAD=45°,∠ADG=ADO=22.5°,

所以∠AGD=112.5°,所以①正確.

因?yàn)?/span>tanAED=,因?yàn)?/span>AE=EFBE

所以AEAB,所以tanAED=2,因此②錯(cuò).

因?yàn)?/span>AG=FGOG,△AGD與△OGD同高,

所以SAGDSOGD,所以③錯(cuò).

根據(jù)題意可得:AE=EF,AG=FG,又因?yàn)?/span>EFAC,

所以∠FEG=AGE,又因?yàn)椤?/span>AEG=FEG

所以∠AEG=AGE,所以AE=AG=EF=FG,

所以四邊形AEFG是菱形,因此④正確.

由折疊的性質(zhì)設(shè)BF=EF=AE=1,則AB=1+,BD=2+,DF=1+,由此可求=,

∵∠DFE=BAD=AOD=90°(折疊的性質(zhì)),

∵四邊形AEFG是菱形,

EFAGAC,

∴△DOG∽△DFE,

= =

EF=2OG,

在直角三角形BEF中,∠EBF=45°,

所以△BEF是等腰直角三角形,同理可證△OFG是等腰直角三角形,

在等腰直角三角形BEF和等腰直角三角形OFG中,BE2=2EF2=2GF2=2×2OG2

所以BE=2OG.因此⑤正確.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是  

A. 某種彩票的中獎(jiǎng)機(jī)會(huì)是則買100張這種彩票一定會(huì)中獎(jiǎng)

B. 為了解全國(guó)中學(xué)生的睡眠情況,應(yīng)該采用普查的方式

C. 一組數(shù)據(jù)3,4,55,5,610的平均數(shù)大于中位數(shù)

D. 同時(shí)拋擲兩枚均勻的硬幣,出現(xiàn)一枚正面朝上且另一枚反面朝上的概率是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】元旦期間,某超市銷售兩種不同品牌的蘋果,已知1千克甲種蘋果和1千克乙種蘋果的進(jìn)價(jià)之和為18元.當(dāng)銷售1千克甲種蘋果和1千克乙種蘋果利潤(rùn)分別為4元和2元時(shí),陳老師購(gòu)買3千克甲種蘋果和4千克乙種蘋果共用82元.

(1)求甲、乙兩種蘋果的進(jìn)價(jià)分別是每千克多少元?

(2)在(1)的情況下,超市平均每天可售出甲種蘋果100千克和乙種蘋果140千克,若將這兩種蘋果的售價(jià)各提高1元,則超市每天這兩種蘋果均少售出10千克,超市決定把這兩種蘋果的售價(jià)提高x元,在不考慮其他因素的條件下,使超市銷售這兩種蘋果共獲利960元,求x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,現(xiàn)將平行四邊形ABCD沿其對(duì)角線AC折疊,使點(diǎn)B落在點(diǎn)B處.ABCD交于點(diǎn)E

1)求證:△AED≌△CEB

2)過點(diǎn)EEFACAB于點(diǎn)F,連接CF,判斷四邊形AECF的形狀并給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠BAC90°,BC5,AB3,點(diǎn)D是線段BC上一動(dòng)點(diǎn),連接AD,以AD為邊作△ADE∽△ABC,點(diǎn)NAC的中點(diǎn),連接NE,當(dāng)線段NE最短時(shí),線段CD的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A的坐標(biāo)是(4,0),并且OA=OC=4OB,動(dòng)點(diǎn)P在過A,B,C三點(diǎn)的拋物線上.

1)求拋物線的解析式;

2)是否存在點(diǎn)P,使得△ACP是以AC為直角邊的直角三角形?若存在,求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,說明理由;

3)過動(dòng)點(diǎn)PPE垂直于y軸于點(diǎn)E,交直線AC于點(diǎn)D,過點(diǎn)Dx軸的垂線.垂足為F,連接EF,當(dāng)線段EF的長(zhǎng)度最短時(shí),求出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某廠家生產(chǎn)一種新型電子產(chǎn)品,制造時(shí)每件的成本為40元,通過試銷發(fā)現(xiàn),銷售量萬件與銷售單價(jià)之間符合一次函數(shù)關(guān)系,其圖象如圖所示.

yx的函數(shù)關(guān)系式;

物價(jià)部門規(guī)定:這種電子產(chǎn)品銷售單價(jià)不得超過每件80元,那么,當(dāng)銷售單價(jià)x定為每件多少元時(shí),廠家每月獲得的利潤(rùn)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O的直徑AB6,AM,BN是⊙O的兩條切線,點(diǎn)DAM上一點(diǎn),連接OD,作BEOD交⊙O于點(diǎn)E,連接DE并延長(zhǎng)交BN于點(diǎn).

1)求證:DC是⊙O的切線;

2)設(shè)ADx,BCy.求yx的函數(shù)關(guān)系式(不要求寫出自變量的取值范圍)

3)若AD1,連接AE并延長(zhǎng)交BCF,求EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個(gè)口袋中有4個(gè)完全相同的小球,把它們分別標(biāo)上數(shù)字﹣1,01,2,隨機(jī)的摸出一個(gè)小球記錄數(shù)字然后放回,在隨機(jī)的摸出一個(gè)小球記錄數(shù)字.求下列事件的概率:

1)兩次都是正數(shù)的概率PA);

2)兩次的數(shù)字和等于0的概率PB).

查看答案和解析>>

同步練習(xí)冊(cè)答案