【題目】定義:和三角形一邊和另兩邊的延長線同時(shí)相切的圓叫做三角形這邊上的旁切圓.

如圖所示,已知:⊙IABCBC邊上的旁切圓,E、F分別是切點(diǎn),ADIC于點(diǎn)D.

(1)試探究:D、E、F三點(diǎn)是否同在一條直線上?證明你的結(jié)論.

(2)設(shè)AB=AC=5,BC=6,如果DIEAEF的面積之比等于m,,試作出分別以 , 為兩根且二次項(xiàng)系數(shù)為6的一個(gè)一元二次方程.

【答案】(1) D、E、F三點(diǎn)是同在一條直線上.(2) 6x2﹣13x+6=0.

【解析】

(1)利用切線長定理及梅氏定理即可求證;

(2)利用相似和韋達(dá)定理即可求解.

解:(1)結(jié)論:DE、F三點(diǎn)是同在一條直線上.

證明:分別延長AD、BC交于點(diǎn)K,

由旁切圓的定義及題中已知條件得:AD=DK,AC=CK,

再由切線長定理得:AC+CE=AFBE=BF,

KE=AF

由梅涅勞斯定理的逆定理可證,D、EF三點(diǎn)共線,

D、E、F三點(diǎn)共線.

(2)AB=AC=5,BC=6,

AE、I三點(diǎn)共線,CE=BE=3,AE=4,

連接IF,則ABE∽△AIF,ADI∽△CEI,A、F、I、D四點(diǎn)共圓.

設(shè)⊙I的半徑為r,則:

,即,

∴由AEF∽△DEI得:

,

,

因此,由韋達(dá)定理可知:分別以、為兩根且二次項(xiàng)系數(shù)為6的一個(gè)一元二次方程是6x2﹣13x+6=0.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在菱形ABCD中,F(xiàn)為邊BC的中點(diǎn),DF與對角線AC交于點(diǎn)M,過M作MECD于點(diǎn)E,1=2.

(1)若CE=1,求BC的長;

(2)求證:AM=DF+ME.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小紅駕車從甲地到乙地,她出發(fā)第xh時(shí)距離乙地ykm,已知小紅駕車中途休息了1小時(shí),圖中的折線表示她在整個(gè)駕車過程中yx之間的函數(shù)關(guān)系.

1B點(diǎn)的坐標(biāo)為(  ,  );

2)求線段AB所表示的yx之間的函數(shù)表達(dá)式;

3)小紅休息結(jié)束后,以60km/h的速度行駛,則點(diǎn)D表示的實(shí)際意義是 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知中,,,過頂點(diǎn)作射線.

1)當(dāng)射線外部時(shí),如圖①,點(diǎn)在射線上,連結(jié)、,已知,.

①試證明是直角三角形;

②求線段的長.(用含的代數(shù)式表示)

2)當(dāng)射線內(nèi)部時(shí),如圖②,過點(diǎn)于點(diǎn),連結(jié),請寫出線段、、的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某縣教育局為了豐富初中學(xué)生的大課間活動(dòng),要求各學(xué)校開展形式多樣的陽光體育活動(dòng).某中學(xué)就學(xué)生體育活動(dòng)興趣愛好的問題,隨機(jī)調(diào)查了本校某班的學(xué)生,并根據(jù)調(diào)查結(jié)果繪制成如下的不完整的扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖:

1)在這次調(diào)查中,喜歡籃球項(xiàng)目的同學(xué)有   人,在扇形統(tǒng)計(jì)圖中,乒乓球的百分比為   %,如果學(xué)校有800名學(xué)生,估計(jì)全校學(xué)生中有   人喜歡籃球項(xiàng)目.

2)請將條形統(tǒng)計(jì)圖補(bǔ)充完整.

3)在被調(diào)查的學(xué)生中,喜歡籃球的有2名女同學(xué),其余為男同學(xué).現(xiàn)要從中隨機(jī)抽取2名同學(xué)代表班級(jí)參加校籃球隊(duì),請直接寫出所抽取的2名同學(xué)恰好是1名女同學(xué)和1名男同學(xué)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,圖象(折線ABCDE)描述了一汽車在某一直路上行駛過程中汽車離出發(fā)地的距離S(千米)和行駛時(shí)間t(小時(shí))之間的函數(shù)關(guān)系,根據(jù)圖中提供的信息,下列說法正確的是( 。

A.汽車共行駛了120千米

B.汽車在行駛途中停留了2小時(shí)

C.汽車在AB段的行駛速度與CD段的行駛速度相同

D.汽車自出發(fā)后3小時(shí)至4.5小時(shí)之間行駛的平均速度為80千米/時(shí)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)C是以AB為直徑的⊙O上一點(diǎn),CH⊥AB于點(diǎn)H,過點(diǎn)B⊙O的切線交直線AC于點(diǎn)D,點(diǎn)ECH的中點(diǎn),連接AE并延長交BD于點(diǎn)F,直線CFAB的延長線于G.

(1)求證:AEFD=AFEC;

(2)求證:FC=FB;

(3)若FB=FE=2,求⊙O的半徑r的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小強(qiáng)騎自行車去郊游,右圖表示他離家的距離y(千米)與所用的時(shí)間x(小時(shí))之間關(guān)系的函數(shù)圖象,小強(qiáng)9點(diǎn)離開家,15點(diǎn)回家,根據(jù)這個(gè)圖象,請你回答下列問題:

1)小強(qiáng)到離家最遠(yuǎn)的地方需要幾小時(shí)?此時(shí)離家多遠(yuǎn)?

2)何時(shí)開始第一次休息?休息時(shí)間多長?

3)小強(qiáng)何時(shí)距家21km?(寫出計(jì)算過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A、B為x軸上兩點(diǎn),C、D為y軸上的兩點(diǎn),經(jīng)

過點(diǎn)A、C、B的拋物線的一部分C1與經(jīng)過點(diǎn)A、D、B的拋物線的一部分C2組合成一條封閉曲線,我們把這條封

閉曲線稱為“蛋線”.已知點(diǎn)C的坐標(biāo)為(0,),點(diǎn)M是拋物線C2<0)的頂點(diǎn).

(1)求A、B兩點(diǎn)的坐標(biāo);

(2)“蛋線”在第四象限上是否存在一點(diǎn)P,使得PBC的面積最大?若存在,求出PBC面積的最大值;若不存在,請說明理由;

(3)當(dāng)BDM為直角三角形時(shí),求的值.

查看答案和解析>>

同步練習(xí)冊答案