分析 (1)過點B作BF⊥BE交EC延長線于F,由∠BEC=45°得BF=BE,根據(jù)四邊形ABCD是正方形得AB=BC、∠ABE=∠CBF,依據(jù)“SAS”證△ABE≌△CBF可得∠AEB=∠F=45°;
(2)由△ABE≌△CBF知CF=AE,在RT△BEF中,由勾股定理得EF=EC+CF=$\sqrt{2}$BE,即AE+CE=$\sqrt{2}$BE.
解答 (1)解:過點B作BF⊥BE交EC的延長線于F,
∵∠BEC=45°,
∴∠F=45°,
∴∠F=∠BEC,
∴BF=BE,
又∵四邊形ABCD是正方形,
∴AB=BC,
∵∠ABC=90°,
∴∠ABE=∠CBF,
在△ABE和△CBF中,
∵$\left\{\begin{array}{l}{BE=BF}\\{∠ABE=∠CBF}\\{AB=CB}\end{array}\right.$,
∴△ABE≌△CBF(SAS),
∴∠AEB=∠F=45°;
(2)證明:∵△ABE≌△CBF,
∴CF=AE,
在Rt△BEF中,
∵BE2+BF2=EF2,
∴$\sqrt{2}$BE=EF,
∴AE+CE=$\sqrt{2}$BE.
點評 本題主要考查全等三角形的判定與性質(zhì),通過構(gòu)建全等三角形將待求角轉(zhuǎn)換到求另一個相等角是解題關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com