【題目】如圖,AC為矩形ABCD的對角線,將邊AB沿AE折疊,使點B落在AC上的點M處,將邊CD沿CF折疊,使點D落在AC上的點N處,易證四邊形AECF是平行四邊形.當∠BAE為( )度時,四邊形AECF是菱形.
A.30°B.40°C.45°D.50°
科目:初中數(shù)學 來源: 題型:
【題目】在九年級復學復課以后,隨機抽取九年級(3)班5名學生的一次晨檢體溫測量值(單位:℃)如下: 36.9,36.8,36.8,36.5,37.關于這組數(shù)據(jù)的說法錯誤的是( 。
A.眾數(shù)是36.8B.平均數(shù)是36.8C.中位數(shù)是36.8D.方差是0.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商店經(jīng)營一款新電動玩具,進貨單價是30元。在1個月的試銷階段,售價是40元,銷售量是400件.根據(jù)市場調(diào)查,銷售單價若每再漲1元,1個月就會少售出10件.
(1)若商店在1個月獲得了6000元銷售利潤,求這款玩具銷售單價是定為多少元的,并考慮了顧客更容易接受.
(2)若玩具生產(chǎn)廠家規(guī)定銷售單價不低于43元,且商店每月要完成不少于350件的銷售任務,求商店銷售這款玩具1個月能獲得的最大利潤.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,反比例函數(shù)的圖象經(jīng)過點,直線與雙曲線在第一、三象限分別相交于、兩點,與軸、軸分別相交于、兩點.
(1)求的值;
(2)連接,是否存在實數(shù),使得?若存在,請求出的值;若不存在,請說明理由
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校要求八年級同學在課外活動中,必須在五項球類(籃球、足球、排球、羽毛球、乒乓球)活動中任選一項(只能選一項)參加訓練,為了了解八年級學生參加球類活動的整體情況,現(xiàn)以八年級2班作為樣本,對該班學生參加球類活動的情況進行統(tǒng)計,并繪制了如圖所示的不完整統(tǒng)計表和扇形統(tǒng)計圖:
根據(jù)圖中提供的信息,解答下列問題:
(1)a= ,b= ;
(2)該校八年級學生共有600人,則該年級參加足球活動的人數(shù)約 人;
(3)該班參加乒乓球活動的5位同學中,有3位男同學(A,B,C)和2位女同學(D,E),現(xiàn)準備從中選取兩名同學組成雙打組合,用樹狀圖或列表法求恰好選出一男一女組成混合雙打組合的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,四邊形ABCO是正方形,點B的坐標為(4,4).
(1)直線y=mx﹣2恰好把正方形ABCO的面積分成相等的兩部分,則m=_____;
(2)若直線y=mx﹣2與正方形ABCO的邊有兩個公共點,則m的取值范圍是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(2017四川省達州市,第16題,3分)如圖,矩形ABCD中,E是BC上一點,連接AE,將矩形沿AE翻折,使點B落在CD邊F處,連接AF,在AF上取點O,以O為圓心,OF長為半徑作⊙O與AD相切于點P.若AB=6,BC=,則下列結(jié)論:①F是CD的中點;②⊙O的半徑是2;③AE=CE;④.其中正確結(jié)論的序號是__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】現(xiàn)種植A、B、C三種樹苗一共480棵,安排80名工人一天正好完成,已知每名工人只植一種樹苗,且每名工人每天可植A種樹苗8棵;或植B種樹苗6棵,或植C種樹苗5棵.經(jīng)過統(tǒng)計,在整個過程中,每棵樹苗的種植成本如圖所示.設種植A種樹苗的工人為x名,種植B種樹苗的工人為y名.
(1)求y與x之間的函數(shù)關系式;
(2)設種植的總成本為w元,
①求w與x之間的函數(shù)關系式;
②若種植的總成本為5600元,從植樹工人中隨機采訪一名工人,求采訪到種植C種樹苗工人的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線 ( 為常數(shù))經(jīng)過點 ,與 軸相 交于點 、(點 在點 的右側(cè)).
(1)求拋物線的解析式和點 的坐標;
(2)將直線 向下平移 ( )個單位長度后,得到的直線與拋物線只有一個公共點 ,求點 的坐標;
(3)在(2)的條件下,連接 、,在 正半軸上是否存在點 ,使以 、、 為頂點的三角形與 相似.若存在,請求出點 的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com