如圖,在△ABC中,∠ACB=90°,BC的垂直平分線EF交BC于點(diǎn)D,交AB于點(diǎn)E,且BE=BF,添加一個(gè)條件,能證明四邊形BECF為正方形的是
 

①BC=AC;  ②CF⊥BF;  ③BD=DF;  ④AC=BF.
考點(diǎn):正方形的判定
專題:
分析:根據(jù)中垂線的性質(zhì):中垂線上的點(diǎn)到線段兩個(gè)端點(diǎn)的距離相等,有BE=EC,BF=FC進(jìn)而得出四邊形BECF是菱形;由菱形的性質(zhì)知,以及菱形與正方形的關(guān)系,進(jìn)而分別分析得出即可.
解答:解:∵EF垂直平分BC,
∴BE=EC,BF=CF,
∵BF=BE,
∴BE=EC=CF=BF,
∴四邊形BECF是菱形;
當(dāng)①BC=AC時(shí),
∵∠ACB=90°,
則∠A=45°時(shí),菱形BECF是正方形.
∵∠A=45°,∠ACB=90°,
∴∠EBC=45°
∴∠EBF=2∠EBC=2×45°=90°
∴菱形BECF是正方形.
故選項(xiàng)①正確;
當(dāng)CF⊥BF時(shí),利用正方形的判定得出,菱形BECF是正方形,故選項(xiàng)②正確;
當(dāng)BD=DF時(shí),利用正方形的判定得出,菱形BECF是正方形,故選項(xiàng)③正確;
當(dāng)AC=BF時(shí),無法得出菱形BECF是正方形,故選項(xiàng)④錯(cuò)誤.
故答案為:①②③.
點(diǎn)評(píng):本題考查了菱形的判定和性質(zhì)及中垂線的性質(zhì)、直角三角形的性質(zhì)、正方形的判定等知識(shí),熟練掌握正方形的相關(guān)的定理是解題關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線y=x2-(m2+8)x+2(m2+6).
(Ⅰ)試求該拋物線與x軸是否相交?
(Ⅱ)若拋物線與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),與y軸交點(diǎn)為C,試判斷∠ABC的大小與m的取值有何關(guān)系?
(Ⅲ)設(shè)拋物線的頂點(diǎn)為P,PD⊥x軸,點(diǎn)D為垂足,若S△ABC=3S△ABP,試判斷PA與BC的位置關(guān)系,并說明理由;
(Ⅳ)在(Ⅰ)(Ⅱ)(Ⅲ)的條件下,若y軸正半軸上有一點(diǎn)N,使以A,O,N為頂點(diǎn)的三角形與以P、A、D為頂點(diǎn)的三角形相似,求N點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

數(shù)學(xué)課上,張老師出示了問題1:如圖1,四邊形ABCD是正方形,BC=2,對(duì)角線交點(diǎn)記作O,點(diǎn)E是邊BC延長(zhǎng)線上一點(diǎn).聯(lián)結(jié)OE交CD邊于F,設(shè)CE=x,CF=y,求y關(guān)于x的函數(shù)解析式及其定義域.
(1)經(jīng)過思考,小明認(rèn)為可以通過添加輔助線--過點(diǎn)O作OM⊥BC,垂足為M求解.你認(rèn)為這個(gè)想法可行嗎?請(qǐng)寫出問題1的答案及相應(yīng)的推導(dǎo)過程;
(2)如果將問題1中的條件“四邊形ABCD是正方形,BC=2”改為“四邊形ABCD是平行四邊形,BC=3,CD=2,”其余條件不變(如圖2),請(qǐng)直接寫出條件改變后的函數(shù)解析式;
(3)如果將問題1中的條件“四邊形ABCD是正方形,BC=2”進(jìn)一步改為:“四邊形ABCD是梯形,AD∥BC,BC=4,CD=3,AD=2”其余條件不變(如圖3),請(qǐng)你寫出條件再次改變后y關(guān)于x的函數(shù)解析式以及相應(yīng)的推導(dǎo)過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,AB∥CD,∠1=(3x+50)°,∠2=(2x+30)°,則∠3的度數(shù)為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

若-3xm+7y2與2x5yn的和仍為單項(xiàng)式,則mn=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

C島在B島的北偏西48°方向,∠ACB等于95°,則C島在A島的
 
方向.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,平行四邊形ABCD中,P為邊AD的中點(diǎn),連接PC,若△APC、△PDC、△BAC的面積分別為S、S1、S2,當(dāng)S=12時(shí),S1+S2=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

一個(gè)直角三角形的兩條直角邊長(zhǎng)分別為
12
厘米和
6
厘米,則這個(gè)直角三角形的面積是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

一組數(shù)據(jù):0,1,2,3,3,5,5,5的眾數(shù)是( 。
A、2B、3C、1D、5

查看答案和解析>>

同步練習(xí)冊(cè)答案