已知開口向上的拋物線y=ax2+bx+c與x軸交于A(x1,0)和B(x2,0)兩點,xl和x2是方程x2+2x-精英家教網(wǎng)3=0的兩個根(x1<x2),而且拋物線與y軸交于C點,∠ACB不小于90°
(1)求點A、點B的坐標和拋物線的對稱軸;
(2)求點C的坐標(用含a的代數(shù)式表示);
(3)求系數(shù)a的取值范圍.
分析:(1)通過解方程即可求出A,B兩點的坐標,根據(jù)兩點的坐標即可得出拋物線的對稱軸.
(2)將A、B兩點的坐標代入拋物線的解析式中,即可消去b得出C點的坐標.
(3)由于∠ACB不小于90°,可先在∠ACB=90°時,用射影定理求出a的值,然后根據(jù)拋物線的二次項系數(shù)|a|的值越大開口越小,來得出a的取值范圍.
解答:解:(1)解方程x2+2x-3=0,得x=-3,x=1
∴A(-3,0),B(1,0);
∴對稱軸為x=-1

(2)把x=0代入拋物線,得y=c.
∴點C的坐標為(0,c)
∵A、B在拋物線上
9a-3b+c=0
a+b+c=0

消去b,得c=-3a
∴C(0,-3a)

(3)∵拋物線開口向上
∴a>0
∴OC=|-3a|=3a
又∵∠ACB不小于90°
∴∠ACB≥90°
若∠ACB=90°,△BOC∽△COA
∴OC2=OA•OB=3×1=3
∴OC=
3

∴3a=
3
,a=
3
3

∴a的取值范圍是0<a≤
3
3
點評:考查一元二次方程的解法,函數(shù)圖象交點、二次函數(shù)的性質(zhì)等知識及綜合應(yīng)用知識、解決問題的能力.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

已知開口向上的拋物線y=ax2+bx+c與x軸交于A(-3,0)、B(1,0)兩點,與y軸交于C點,∠精英家教網(wǎng)ACB不小于90°.
(1)求點C的坐標(用含a的代數(shù)式表示);
(2)求系數(shù)a的取值范圍;
(3)設(shè)拋物線的頂點為D,求△BCD中CD邊上的高h的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

20、已知開口向上的拋物線y=ax2-2x+|a|-4經(jīng)過點(0,-3).
(1)確定此拋物線的解析式;
(2)當x取何值時,y有最小值,并求出這個最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知開口向上的拋物線y=ax2+bx+c與x軸交于A(-3,0)、B(1,0)兩點,與y軸交于C點,∠ACB不小于90°.
(1)求點C的坐標(用含a的代數(shù)式表示);
(2)求系數(shù)a的取值范圍;
(3)設(shè)拋物線的頂點為D,求△BCD中CD邊上的高h的最大值.
(4)設(shè)E(-
12
,0)
,當∠ACB=90°,在線段AC上是否存在點F,使得直線EF將△ABC的面積平分?若存在,求出點F的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2007•烏魯木齊)已知開口向上的拋物線y=ax2-2x+|a|-4經(jīng)過點(0,-3).
(1)此拋物線的解析式為
y=x2-2x-3
y=x2-2x-3
;
(2)當x=
1
1
時,y有最小值,這個最小值是
-4
-4

查看答案和解析>>

同步練習冊答案