A. | 3 | B. | 4 | C. | 5 | D. | 6 |
分析 設(shè)點(diǎn)B落在AC上的E點(diǎn)處,連接DE,如圖所示,由三角形ABC為直角三角形,已知AB與BC的長(zhǎng),利用勾股定理求出AC的長(zhǎng),設(shè)BD=x,由折疊的性質(zhì)得到ED=BD=x,AE=AB=6,進(jìn)而表示出CE與CD,在直角三角形DEC中,利用勾股定理列出關(guān)于x的方程,求出方程的解得到x的值,進(jìn)而得到CD的長(zhǎng).
解答 解:設(shè)點(diǎn)B落在AC上的E點(diǎn)處,連接DE,如圖所示,
∵△ABC為直角三角形,AB=6,BC=8,
∴根據(jù)勾股定理得:AC=$\sqrt{A{B}^{2}+B{C}^{2}}$=10.
設(shè)BD=x,由折疊可知:DE=BD=x,AE=AB=6,
可得:CE=AC-AE=10-6=4,CD=BC-BD=8-x,
在Rt△CDE中,根據(jù)勾股定理得:(8-x)2=42+x2,
解得:x=3,
∴CD=8-3=5.
故選C.
點(diǎn)評(píng) 本題主要考查了翻折變換、勾股定理等知識(shí)點(diǎn),熟知折疊是一種對(duì)稱變換,它屬于軸對(duì)稱,折疊前后圖形的形狀和大小不變,位置變化,對(duì)應(yīng)邊和對(duì)應(yīng)角相等是解答此題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 同位角相等 | |
B. | 同旁內(nèi)角互補(bǔ),兩直線平行 | |
C. | 等角的余角相等 | |
D. | 過一點(diǎn)能且只能作一條直線和直線平行 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com