如圖,已知△ABC的面積為3,且AB=AC,現(xiàn)將△ABC沿CA方向平移CA長(zhǎng)度得到△EFA.
(1)求△ABC所掃過(guò)的圖形的面積;
(2)試判斷AF與BE的位置關(guān)系,并說(shuō)明理由;
(3)若∠BEC=15°,求AC的長(zhǎng).

【答案】分析:(1)根據(jù)題意:易得△ABC≌△EFA,BA∥EF,且BA=EF,進(jìn)而得出S平行四邊形ABFE=2S△EAF,故可求出△ABC掃過(guò)圖形的面積為S平行四邊形ABFE;
(2)根據(jù)平移的性質(zhì),可得四邊形ABFE為菱形,故AF與BE互相垂直且平分;
(3)根據(jù)題意易得:所以∠AEB=∠ABE=15°,BD•AC=3,可得AC•AC=3,進(jìn)而可得AC的長(zhǎng)度.
解答:解:(1)連接BF,由題意知△ABC≌△EFA,BA∥EF,且BA=EF
∴四邊形ABFE為平行四邊形,
∴S平行四邊形ABFE=2S△EAF
∴△ABC掃過(guò)圖形的面積為S平行四邊形ABFE=2×3=6;

(2)由(1)知四邊形ABFE為平行四邊形,且AB=AE,
∴四邊形ABFE為菱形,
∴AF與BE互相垂直且平分.

(3)過(guò)點(diǎn)B作BD⊥CA于點(diǎn)D,
∵AB=AE,
∴∠AEB=∠ABE=15°.
∴∠BAD=30°,BD=AB=AC.
BD•AC=3,
AC•AC=3.
∴AC2=12.
∴AC=2
點(diǎn)評(píng):本題考查利用全等三角形的判定、菱形的判定和平移的知識(shí)結(jié)合求解.考查了學(xué)生綜合運(yùn)用數(shù)學(xué)的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知△ABC的面積S△ABC=1.
在圖1中,若
AA1
AB
=
BB1
BC
=
CC1
CA
=
1
2
,則S△A1B1C1=
1
4

在圖2中,若
AA2
AB
=
BB2
BC
=
CC2
CA
=
1
3
,則S△A2B2C2=
1
3
;
在圖3中,若
AA3
AB
=
BB3
BC
=
CC3
CA
=
1
4
,則S△A3B3C3=
7
16
;
按此規(guī)律,若
AA8
AB
=
BB8
BC
=
CC8
CA
=
1
9
,S△A8B8C8=
 

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知△ABC的面積為4,且AB=AC,現(xiàn)將△ABC沿CA方向平移CA的長(zhǎng)度,得到△EFA.
(1)判斷AF與BE的位置關(guān)系,并說(shuō)明理由;
(2)若∠BEC=15°,求AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•溫州二模)如圖,已知△ABC的面積是2平方厘米,△BCD的面積是3平方厘米,△CDE的面積是3平方厘米,△DEF的面積是4平方厘米,△EFG的面積是3平方厘米,△FGH的面積是5平方厘米,那么,△EFH的面積是
4
4
 平方厘米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2010•孝感模擬)如圖,已知△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(-2,2)、B(-5,0)、C(-1,0).
(1)請(qǐng)直接寫出點(diǎn)A關(guān)于y軸對(duì)稱的點(diǎn)的坐標(biāo);
(2)將△ABC繞坐標(biāo)原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°得到△A1B1C1,再將△A1B1C1以C1為位似中心,放大2倍得到△A2B2C1,請(qǐng)畫出△A1B1C1和△A2B2C1,并寫出一個(gè)點(diǎn)A2的坐標(biāo).(只畫一個(gè)△A2B2C1即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別是A(-7,1),B(-3,3),C(-2,6).
(1)求作一個(gè)三角形,使它與△ABC關(guān)于y軸對(duì)稱;
(2)寫出(1)中所作的三角形的三個(gè)頂點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案