【題目】小華同學(xué)將筆記本電腦水平放置在桌子上,當(dāng)是示屏的邊緣線與底板的邊緣線所在水平線的夾角為120°時(shí),感覺最舒適(如圖①).側(cè)面示意圖為圖②;使用時(shí)為了散熱,他在底板下面墊入散熱架,如圖③,點(diǎn)、、在同一直線上,,,.
(1)求的長(zhǎng);
(2)如圖④,墊入散熱架后,要使顯示屏的邊緣線與水平線的夾角仍保持120°,求點(diǎn)到的距離.(結(jié)果保留根號(hào))
【答案】(1)12cm;(2)點(diǎn)到的距離為(12+12)cm.
【解析】
(1)在Rt△AOC中,由30度角所對(duì)的直角邊長(zhǎng)度是斜邊的一半求解即可;
(2)過點(diǎn)O作OM∥AC,過點(diǎn)B′作B′E⊥AC交AC的延長(zhǎng)線于點(diǎn)E,交OM于點(diǎn)D,B′E即為點(diǎn)到的距離,根據(jù)題意求出∠OB′D=30°,四邊形OCED為矩形,根據(jù)B′E=B′D+DE求解即可.
解:(1)∵,,
∴.
即OC的長(zhǎng)度為12cm.
(2)如圖,過點(diǎn)O作OM∥AC,過點(diǎn)B′作B′E⊥AC交AC的延長(zhǎng)線于點(diǎn)E,交OM于點(diǎn)D,B′E即為點(diǎn)到的距離,
∵OM∥AC,B′E⊥AC,
∴B′E⊥OD,
∵MN∥AC,
∴∠NOA=∠OAC=30°,
∵∠AOB=120°,
∴∠NOB=90°,
∵∠NOB′=120°,
∴∠BOB′=120°-90°=30°,
∵BC⊥AC,B′E⊥AE,MN∥AE,
∴BC∥B′E,四邊形OCED為矩形,
∴∠OB′D=∠BOB′=30°,DE=OC=12cm,
在Rt△B′OD中,∵∠OB′D=30°,B′O=BO=24cm,
∴
B′D= ,
B′E=B′D+DE= ,
答:點(diǎn)到的距離為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將一組數(shù)據(jù):3,1,2,4,2,5,4去掉3后,新的數(shù)據(jù)的特征量發(fā)生變化的是( )
A.中位數(shù)B.平均數(shù)C.眾數(shù)D.方差
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:有兩個(gè)相鄰內(nèi)角互余的四邊形稱為鄰余四邊形,這兩個(gè)角的夾邊稱為鄰余線.
(1)如圖1,在△ABC中,AB=AC,AD是△ABC的角平分線,E,F分別是BD,AD上的點(diǎn).求證:四邊形ABEF是鄰余四邊形.
(2)如圖2,在5×4的方格紙中,A,B在格點(diǎn)上,請(qǐng)畫出一個(gè)符合條件的鄰余四邊形ABEF,使AB是鄰余線,E,F在格點(diǎn)上.
(3)如圖3,在(1)的條件下,取EF中點(diǎn)M,連結(jié)DM并延長(zhǎng)交AB于點(diǎn)Q,延長(zhǎng)EF交AC于點(diǎn)N.若N為AC的中點(diǎn),DE=2BE,QB=6,求鄰余線AB的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我市某學(xué)校落實(shí)立德樹人根本任務(wù),構(gòu)建“五育并舉”教育體系,開設(shè)了“廚藝、園藝、電工、木工、編織”五大類勞動(dòng)課程.為了解七年級(jí)學(xué)生對(duì)每類課程的選擇情況,隨機(jī)抽取了七年級(jí)若干名學(xué)生進(jìn)行調(diào)查(每人只選一類最喜歡的課程),將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖:
(1)本次隨機(jī)調(diào)查的學(xué)生人數(shù)為 人;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若該校七年級(jí)共有800名學(xué)生,請(qǐng)估計(jì)該校七年級(jí)學(xué)生選擇“廚藝”勞動(dòng)課程的人數(shù);
(4)七(1)班計(jì)劃在“園藝、電工、木工、編織”四大類勞動(dòng)課程中任選兩類參加學(xué)校期末展示活動(dòng),請(qǐng)用列表或畫樹狀圖的方法,求恰好選中“園藝、編織”這兩類勞動(dòng)課程的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,圓是的外接圓,其切線與直徑的延長(zhǎng)線相交于點(diǎn),且.
(1)求的度數(shù);
(2)若,求圓的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖1是一個(gè)地鐵站入口的雙翼閘機(jī).如圖2,它的雙翼展開時(shí),雙翼邊緣的端點(diǎn)A與B之間的距離為10cm,雙翼的邊緣AC=BD=54cm,且與閘機(jī)側(cè)立面夾角∠PCA=∠BDQ=30°.當(dāng)雙翼收起時(shí),可以通過閘機(jī)的物體的最大寬度為( )
A. (54+10) cm B. (54+10) cm C. 64 cm D. 54cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“三等分角”大約是在公元前五世紀(jì)由古希臘人提出來(lái)的,借助如圖所示的“三等分角儀”能三等分任一角.這個(gè)三等分角儀由兩根有糟的棒OA、OB組成.兩根棒在O點(diǎn)相連并可繞O轉(zhuǎn)動(dòng),C點(diǎn)固定,OC=CD=DE,點(diǎn)D,E在槽中滑動(dòng),若∠BDE=84°.則∠AOB是______°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,反比例函數(shù)y=kx-1(x>0)的圖象經(jīng)過點(diǎn)A(1,2)和點(diǎn)B(m,n)(m>1),過點(diǎn)B作y軸的垂線,垂足為C.
(1)求該反比例函數(shù)解析式;
(2)當(dāng)△ABC面積為2時(shí),求點(diǎn)B的坐標(biāo).
(3)P為線段AB上一動(dòng)點(diǎn)(P不與A、B重合),在(2)的情況下,直線y=ax﹣1與線段AB交于點(diǎn)P,直接寫出a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等腰直角中,,是線段上一動(dòng)點(diǎn)(與點(diǎn)、不重合),連結(jié),延長(zhǎng)至點(diǎn),,過點(diǎn)作于點(diǎn),交于點(diǎn).
(1)若,求的大小(用含的式子表示);
(2)用等式表示與之間的數(shù)量關(guān)系,并加以證明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com