當(dāng)a=-數(shù)學(xué)公式、b=2時(shí),求代數(shù)式a(6a-b)(6a+b)的值.

解:a(6a-b)(6a+b),
=(6a2-ab)(6a+b),
=36a3+6a2b-6a2b-ab2
=36a3-ab2,
當(dāng)a=-、b=2時(shí),
原式=36×(-3-(-)×22=
分析:本題應(yīng)首先對代數(shù)式去括號,然后合并同類項(xiàng),將整式化為最簡式,然后把a(bǔ)、b的值代入即可.
點(diǎn)評:本題考查了整式的化簡.整式的加減運(yùn)算實(shí)際上就是去括號、合并同類項(xiàng),這是各地中考的?键c(diǎn)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

小張騎車從甲地出發(fā)到達(dá)乙地后立即按原路返回甲地,出發(fā)后距甲地精英家教網(wǎng)的路程y(km)與時(shí)間x(h)的函數(shù)圖象如圖所示.
(1)小張?jiān)诼飞贤A?!--BA-->
 
h,他從乙地返回時(shí)騎車的速度為
 
km/h;
(2)小王在距甲地路程15km的地方與小張同時(shí)出發(fā),按相同路線前往乙地,當(dāng)他到達(dá)乙地停止行動(dòng)時(shí),小張已返回到甲、乙兩地的中點(diǎn)處.已知小王距甲地的路程y(km)與時(shí)間x(h)成一次函數(shù)關(guān)系.
①求y與x的函數(shù)關(guān)系式;
②利用函數(shù)圖象,判斷小王與小張?jiān)谕局泄蚕嘤鰩状危坎⒂?jì)算第一次相遇的時(shí)間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,AB是半圓⊙O的直徑,AC⊥AB,AB=2AC,BF⊥AB,在直徑AB上任取一點(diǎn)P(不與端點(diǎn)A、精英家教網(wǎng)B重合),過A、P、C三點(diǎn)的圓與⊙O相交于除點(diǎn)A以外的另一點(diǎn)D,連接AD并延長交射線BF于點(diǎn)E,連接DB、DP、DC.
(1)求證:△ACD∽△BPD;
(2)求證:BE=2BP;
(3)試問當(dāng)點(diǎn)P在何位置時(shí),DE=2AD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在一個(gè)坡角為30°的斜坡上有一棵樹,高AB,當(dāng)太陽光與水平線成60°時(shí),測得該樹在斜坡上的樹影BC的長為6m,則樹高AB=
 
m.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)矩形ABCD的邊長AB=6,BC=4,點(diǎn)F在DC上,DF=2.動(dòng)點(diǎn)M、N分別從點(diǎn)D、B同時(shí)出發(fā),沿線段DA、線段BA向點(diǎn)A的方向運(yùn)動(dòng),當(dāng)動(dòng)點(diǎn)M運(yùn)動(dòng)到點(diǎn)A時(shí),M、N兩點(diǎn)同時(shí)停止運(yùn)動(dòng).連接FM、FN.設(shè)點(diǎn)M、N的運(yùn)動(dòng)速度都是1個(gè)單位/秒,M、N運(yùn)動(dòng)的時(shí)間為x秒,問:當(dāng)x為多少時(shí),F(xiàn)M⊥FN?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,拋物線y=mx2+8mx+12n與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),在第二象限內(nèi)精英家教網(wǎng)拋物線上的一點(diǎn)C,使△OCA∽△OBC,且AC:BC=
3
:1,若直線AC交y軸于P.
(1)當(dāng)C恰為AP中點(diǎn)時(shí),求拋物線和直線AP的解析式;
(2)若點(diǎn)M在拋物線的對稱軸上,⊙M與直線PA和y軸都相切,求點(diǎn)M的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案