【題目】小麗從學校去圖書館,小紅沿同一條路從圖書館回學校,她們同時出發(fā),小麗開始跑步中途改為步行,到達圖書館恰好用30分鐘,小紅騎自行車回學校,兩人離學校的路程與各自離開出發(fā)地的時間(分鐘)之間的函數圖象如圖所示.
(1)小紅騎自行車的速度是_____米/分鐘,小麗從學校到圖書館的平均速度是_____米/分鐘;
(2)求小麗從學校去圖書館時,與之間的函數關系式;
(3)兩人出發(fā)后多少分鐘相遇,相遇地點離圖書館的路程是多少米.(結果保留一位小數).
【答案】(1)400,;(2);(3)相遇地點離圖書館的路程約為.
【解析】
(1)直接根據圖象上所給的數據的實際意義可求解;
(2)先分別求出小麗跑步和步行的速度,再根據路程=速度×時間列出y與x之間的函數關系式即可;
(3)根據兩人相向而行,相遇時,兩人所行時間相同,路程之和為4000米,進而可求得相遇時的時間,進一步求得相遇地點離圖書館的路程.
解:(1)小紅騎自行車的速度:4000÷10=400,
小麗從學校到圖書館的平均速度:4000÷30=;
(2)小麗跑步的速度為:2000÷10=200米/分鐘,
步行的速度是(4000-2000)÷(30-10)=100米/分鐘,
∴跑步時與之間的函數關系式為,
步行時與之間的函數關系式為,
即.
(3)由題意得200x+400x=4000,
∴,
∴相遇地點離圖書館的路程是.
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,O為坐標原點,△AOB是等腰直角三角形,∠AOB=90°,點A(2,1).
(1)求點B的坐標;
(2)求經過A、O、B三點的拋物線的函數表達式;
(3)在(2)所求的拋物線上,是否存在一點P,使四邊形ABOP的面積最大?若存在,求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,矩形OABC的頂點B的坐標為(4,2),直線y=﹣x+與邊AB,BC分別相交于點M,N,函數y=(x>0)的圖象過點M.
(1)試說明點N也在函數y=(x>0)的圖象上;
(2)將直線MN沿y軸的負方向平移得到直線M′N′,當直線M′N′與函數y═(x>0)的圖象僅有一個交點時,求直線M'N′的解析式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知的三個頂點坐標分別是,,.
(1)請作出繞點逆時針旋轉的;
(2)以點為位似中心,將擴大為原來的2倍,得到,請在軸的左側畫出;
(3)請直接寫出的正弦值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1所示,一架伸縮樓梯托架固定在墻面上,托架始終與地面垂直且.如圖2, 旋轉支撐臂繞著點旋轉,當伸縮樓梯下放時,樓梯長米,點正好接觸地面,此時,旋轉支撐臂與樓梯托架之間的夾角為;當伸縮樓梯上收時,旋轉支撐臂繞著點逆時針旋轉,樓梯長變?yōu)?/span>米,此時,樓梯底部的腳墊到地面的距離為( )米.
A.B.C.D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我們定義:如圖1,在△ABC看,把AB點繞點A順時針旋轉α(0°<α<180°)得到AB',把AC繞點A逆時針旋轉β得到AC',連接B'C'.當α+β=180°時,我們稱△A'B'C'是△ABC的“旋補三角形”,△AB'C'邊B'C'上的中線AD叫做△ABC的“旋補中線”,點A叫做“旋補中心”.
特例感知:
(1)在圖2,圖3中,△AB'C'是△ABC的“旋補三角形”,AD是△ABC的“旋補中線”.
①如圖2,當△ABC為等邊三角形時,AD與BC的數量關系為AD= BC;
②如圖3,當∠BAC=90°,BC=8時,則AD長為 .
猜想論證:
(2)在圖1中,當△ABC為任意三角形時,猜想AD與BC的數量關系,并給予證明.
拓展應用
(3)如圖4,在四邊形ABCD,∠C=90°,∠D=150°,BC=12,CD=2,DA=6.在四邊形內部是否存在點P,使△PDC是△PAB的“旋補三角形”?若存在,給予證明,并求△PAB的“旋補中線”長;若不存在,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com