在⊙O中,弦AB所對的劣弧為圓的數(shù)學(xué)公式,有以下結(jié)論:①數(shù)學(xué)公式為60°,②∠AOB=60°,③∠AOB=數(shù)學(xué)公式=60°,④△ABO為等邊三角形,⑤弦AB的長等于這個圓的半徑.其中正確的是


  1. A.
    ①②③④⑤
  2. B.
    ①②④⑤
  3. C.
    ①②
  4. D.
    ②④⑤
B
分析:由弦AB所對的劣弧為圓的,得到弧AB的度數(shù)=×360°=60°,根據(jù)等邊三角形的判定得到△OAB為等邊三角形,即AB=OA,
而∠AOB不能等于弧AB,所以所以①②④⑤正確,③不正確.
解答:解:如圖,
∵弦AB所對的劣弧為圓的,
∴弧AB的度數(shù)=×360°=60°,
∴∠AOB=60°,
而OA=OB,
∴△OAB為等邊三角形,即AB=OA,
所以①②④⑤正確,∠AOB不能等于弧AB,所以③不正確.
故選B.
點(diǎn)評:本題考查了在同圓或等圓中,如果兩個圓心角以及它們對應(yīng)的兩條弧、兩條弦中有一組量相等,則另外兩組量也對應(yīng)相等.也考查了等邊三角形的判定.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在⊙O中,弦AB所對的劣弧為圓的
13
,圓的半徑為4厘米,則AB=
 
厘米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在⊙O中,弦AB所對的劣弧為圓的
1
6
,有以下結(jié)論:①
AB
為60°,②∠AOB=60°,③∠AOB=
AB
=60°,④△ABO為等邊三角形,⑤弦AB的長等于這個圓的半徑.其中正確的是(  )
A、①②③④⑤B、①②④⑤
C、①②D、②④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在⊙M中,弦AB所對的圓心角為120度,已知圓的半徑為2cm,并建立如圖所示的直角坐精英家教網(wǎng)標(biāo)系.
(1)求圓心M的坐標(biāo);
(2)求經(jīng)過A,B,C三點(diǎn)的拋物線的解析式;
(3)設(shè)點(diǎn)P是⊙M上的一個動點(diǎn),當(dāng)△PAB為Rt△PAB時,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在⊙O中,弦AB所對的圓周角之間的關(guān)系為
相等或互補(bǔ)
相等或互補(bǔ)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在⊙M中,弦AB所對的圓心角為120°,已知圓的半徑為2cm,并建立如圖所示的直角坐標(biāo)系.
(1)求圓心M的坐標(biāo);
(2)點(diǎn)P是⊙M上的一個動點(diǎn),當(dāng)△PAB為直角三角形時,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案