如圖,在直角梯形ABCD中,AD∥BC,∠B=90°,將直角梯形ABCD沿CE折疊,使點D落在AB上的F點,若AB=BC=12,EF=10,∠FCD=90°,則AF=________.

6或8
分析:此題需要運用全等三角形來求解,過C作CG⊥AD于G;易證得△CGD≌△CBF,得BF=GD,然后用未知數(shù)表示出AF的長,進(jìn)而可得GD、EG、AE的表達(dá)式,即可在Rt△AEF中,由勾股定理求得AF的長.
解答:解:過C作CG⊥AD于G,則BC=AG=12;
由折疊的性質(zhì)知:CF=CD,EF=ED=10,
又∵∠GCD=∠BCF=90°-∠FCG,∠B=∠CGD=90°,
∴△CBF≌△CGD,得BF=GD,CG=BC=12,即AB=CG=12;
設(shè)AF=x,則BF=GD=12-x,EG=ED-GD=10-(12-x)=x-2,
AE=AG-EG=12-(x-2)=14-x;
在Rt△AEF中,AF=x,AE=14-x,EF=10;
由勾股定理得:x2+(14-x)2=102,解得x=6,x=8;
故AF的長為6或8.
點評:此題主要考查的是圖形的翻折變換,涉及到全等三角形的判定和性質(zhì)、勾股定理等知識的綜合應(yīng)用,能夠正確地構(gòu)造出全等三角形是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,在直角梯形ABCD中,AD∥BC,CD⊥BC,E為BC邊上的點.將直角梯形ABCD沿對角線BD折疊,使△ABD與△EBD重合(如圖中陰影所示).若∠A=130°,AB=4cm,則梯形ABCD的高CD≈
3.1
cm.(結(jié)果精確到0.1cm)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在直角梯形ABCD中,AB∥DC,∠D=90°,AC⊥BC,AB=10cm,BC=6cm,F(xiàn)點以2cm/秒的速度在線段AB上由A向B勻速運動,E點同時以1cm/秒的速度在線段BC上由B向C勻速運動,設(shè)運動時間為t秒(0<t<5).
(1)求證:△ACD∽△BAC;
(2)求DC的長;
(3)設(shè)四邊形AFEC的面積為y,求y關(guān)于t的函數(shù)關(guān)系式,并求出y的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1998•大連)如圖,在直角梯形ABCD中.AD∥BC,DC⊥BC,且BC=3AD.以梯形的高AE為直徑的⊙O交AB于點F,交CD于點G、H.過點F引⊙O的切線交BC于點N.
(1)求證:BN=EN;
(2)求證:4DH•HC=AB•BF;
(3)設(shè)∠GEC=α.若tan∠ABC=2,求作以tanα、cotα為根的一元二次方程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角梯形ABCD中,DC∥AB,∠ADC=90°,AB=3a,CD=2a,AD=2,點E、F分別是腰AD、BC上的動點,點G在AB上,且四邊形AEFG是矩形.設(shè)FG=x,矩形AEFG的面積為y.
(1)求y與x之間的函數(shù)關(guān)式,并寫出自變量x的取值范圍;
(2)在腰BC上求一點F,使梯形ABCD的面積是矩形AEFG的面積的2倍,并求出此時BF的長;
(3)當(dāng)∠ABC=60°時,矩形AEFG能否為正方形?若能,求出其邊長;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角梯形ABCD中,AB∥CD,∠C=90°,AB=6cm,CD=10cm,AD=5cm,動點P、Q分別從點A、C同時出發(fā),點P以2cm/s的速度向點B移動,點Q以1cm/s的速度向點D移動,當(dāng)一個動點到達(dá)終點時另一個動點也隨之停止運動.
(1)經(jīng)過幾秒鐘,點P、Q之間的距離為5cm?
(2)連接PD,是否存在某一時刻,使得PD恰好平分∠APQ?若存在,求出此時的移動時間;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案