【題目】如圖,菱形紙片的邊長為翻折使點(diǎn)兩點(diǎn)重合在對(duì)角線上一點(diǎn)分別是折痕.設(shè).
(1)證明:;
(2)當(dāng)時(shí),六邊形周長的值是否會(huì)發(fā)生改變,請(qǐng)說明理由;
(3)當(dāng)時(shí),六邊形的面積可能等于嗎?如果能,求此時(shí)的值;如果不能,請(qǐng)說明理由.
【答案】(1)見解析;(2)不變,見解析;(3)能,或
【解析】
(1)由折疊的性質(zhì)得到BE=EP,BF=PF,得到BE=BF,根據(jù)菱形的性質(zhì)得到AB∥CD∥FG,BC∥EH∥AD,于是得到結(jié)論;
(2)由菱形的性質(zhì)得到BE=BF,AE=FC,推出△ABC是等邊三角形,求得∠B=∠D=60°,得到∠B=∠D=60°,于是得到結(jié)論;
(3)記AC與BD交于點(diǎn)O,得到∠ABD=30°,解直角三角形得到AO=1,BO=,求得S四邊形ABCD=2,當(dāng)六邊形AEFCHG的面積等于時(shí),得到S△BEF+S△DGH=,設(shè)GH與BD交于點(diǎn)M,求得GM=x,根據(jù)三角形的面積列方程即可得到結(jié)論.
解:折疊后落在上,
平分
,
四邊形為菱形,同理四邊形為菱形,
四邊形為平行四邊形,
.
不變.
理由如下:由得
四邊形為菱形,
為等邊三角
,
為定值.
記與交于點(diǎn).
當(dāng)六邊形的面積為時(shí),
由得
記與交于點(diǎn)
,
同理
即
化簡得
解得,
∴當(dāng)或時(shí),六邊形的面積為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有兩個(gè)不透明的乒乓球盒,甲盒中裝有1個(gè)白球和2個(gè)紅球,乙盒中裝有2個(gè)白球和若干個(gè)紅球,這些小球除顏色不同外,其余均相同.若從乙盒中隨機(jī)摸出一個(gè)球,摸到紅球的概率為.
(1)求乙盒中紅球的個(gè)數(shù);
(2)若先從甲盒中隨機(jī)摸出一個(gè)球,再從乙盒中隨機(jī)摸出一個(gè)球,請(qǐng)用樹形圖或列表法求兩次摸到不同顏色的球的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在矩形ABCD中,P為CD邊上一點(diǎn)(DP<CP),∠APB=90°.將ΔADP沿AP翻折得到,PD′的延長線交邊AB于點(diǎn)M,過點(diǎn)B作BN‖MP交DC于點(diǎn)N.
圖1
圖2
(1)求證:;
(2)請(qǐng)判斷四邊形PMBN的形狀,并說明理由;
(3)如圖2,連接AC,分別交PM,PB于點(diǎn)E,F(xiàn).若tan∠PAD=,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在正方形中,,為對(duì)角線上的一點(diǎn),連接和.
(1)求證:;
(2)如圖2,延長交于點(diǎn),為上一點(diǎn),連接交于點(diǎn),且有.
①判斷與的位置關(guān)系,并說明理由;
②如圖3,取中點(diǎn),連接、,當(dāng)四邊形為平行四邊形時(shí),求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)不透明的袋子中裝有紅、白兩種顏色的小球,這些球除顏色外完全相同,其中紅球有個(gè),若從中隨機(jī)摸出一個(gè)球,這個(gè)球是白球的概率為.
()請(qǐng)直接寫出袋子中白球的個(gè)數(shù).
()隨機(jī)摸出一個(gè)球后,放回并攪勻,再隨機(jī)摸出一個(gè)球,求兩次都摸到相同顏色的小球的概率.(請(qǐng)結(jié)合樹狀圖或列表解答)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某網(wǎng)店銷售某款童裝,每件售價(jià)60元,每星期可賣300件,為了促銷,該網(wǎng)店決定降價(jià)銷售.市場調(diào)查反映:每降價(jià)1元,每星期可多賣30件.已知該款童裝每件成本價(jià)40元,設(shè)該款童裝每件售價(jià)x元,每星期的銷售量為y件.
(1)求y與x之間的函數(shù)關(guān)系式;
(2)當(dāng)每件售價(jià)定為多少元時(shí),每星期的銷售利潤最大,最大利潤多少元?
(3)若該網(wǎng)店每星期想要獲得不低于6480元的利潤,每星期至少要銷售該款童裝多少件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,□ABCD,BE//DF,且分別交對(duì)角線AC于點(diǎn)E,F(xiàn),連接ED,BF .
求證:(1)ΔABE≌ΔCDF;
(2)∠DEF=∠BFE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,過B作一直線與CD相交于點(diǎn)E,過A作AF垂直BE于點(diǎn)F,過C作CG垂直BE于點(diǎn)G,在FA上截取FH=FB,再過H作HP垂直AF交AB于P.若CG=3.則△CGE與四邊形BFHP的面積之和為 _________ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠BAC=90°,AD⊥BC,∠ABC的平分線BE交AD于點(diǎn)F,AG平分∠DAC.給出下列結(jié)論:①∠BAD=∠C; ②∠AEF=∠AFE; ③∠EBC=∠C;④AG⊥EF.正確結(jié)論有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com