【題目】問(wèn)題探究:

(1)如圖1,在△ABC中,∠B=90,AB=3,BC=4,若△ABC的邊上存在點(diǎn)P,使△ABP是以AB為腰的等腰三角形,則CP的長(zhǎng)為_(kāi)_____;

(2)如圖2,在矩形ABCD中,AB=3,邊BC上存在點(diǎn)P,使∠APD=90,求矩形ABCD面積的最小值.

問(wèn)題解決:

(3)如圖3,在四邊形ABCD中,AB=3,∠A=∠B=90,∠C=45,邊CD上存在點(diǎn)P,使∠APB=60°,在此條件下,四邊形ABCD的面積是否存在最大值?若存在,求出最大值;若不存在,請(qǐng)說(shuō)明理由.

【答案】(1) 1或或2;(2) 矩形ABCD面積的最小值為18;(3)存在,+.

【解析】1)分三種情形分別求解即可;

2)如圖2當(dāng)以AD為直徑的⊙OBC相切時(shí),切點(diǎn)為P此時(shí)∠APD=90°,AD的長(zhǎng)最小.求出AD的長(zhǎng)即可解決問(wèn)題;

3)存在.如圖3如圖作等邊三角形ABM的外接圓⊙O,當(dāng)直線CD與⊙O相切與P時(shí)四邊形ABCD的面積最大,此時(shí)滿足條件∠APB=AMB=60°.想辦法求出AD、AB即可解決問(wèn)題;

1)如圖1BHAC

RtABC中,∵∠ABC=90°,AB=3BC=4,AC==5

ABBC=ACBHBH=.在RtABH,AH==,分三種情況討論:

①當(dāng)BA=BP1時(shí),PC1=43=1

②當(dāng)BA=BP2時(shí).∵BHAP2,AH=HP2=CP2=ACAP2=5=

③當(dāng)AB=AP3時(shí),CP3=53=2

綜上所述滿足條件的PC的值為12

故答案為:12

2)如圖2,當(dāng)以AD為直徑的⊙OBC相切時(shí)切點(diǎn)為P,此時(shí)∠APD=90°,AD的長(zhǎng)最。

連接OP.則OPBC易證四邊形BPO,四邊形CDOP都是正方形,BC=AD=6,AB=CD=3∴矩形ABCD面積的最小值為18

3)存在.如圖3,如圖作等邊三角形ABM的外接圓⊙O,當(dāng)直線CD與⊙O相切與P時(shí),四邊形ABCD的面積最大,此時(shí)滿足條件∠APB=AMB=60°.

延長(zhǎng)MOABEOFADF,PTBCT連接OP.,PTOMR

AB=3ADBC,C=45°,CD=AB=3

∵△ABM是等邊三角形,四邊形AEOF是矩形,AE=EB=NR=RT=,AF=EO=,OM=OP=OR=PR=,BT=AN=+PN=DN=TNPT=3=,AD=ANDN=﹣()=,BC=BT+CT=++=S四邊形ABCD=AB=)=+3

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】目前微信支付寶、共享單車網(wǎng)購(gòu)給我們帶來(lái)了很多便利,初二數(shù)學(xué)小組在校內(nèi)對(duì)你最認(rèn)可的四大新生事物進(jìn)行了調(diào)查,隨機(jī)調(diào)查了人(每名學(xué)生必選一種且只能從這四種中選擇一種)并將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計(jì)圖.

1)根據(jù)圖中信息求出=___________,=_____________;

2)請(qǐng)你幫助他們將這兩個(gè)統(tǒng)計(jì)圖補(bǔ)全;

3)根據(jù)抽樣調(diào)查的結(jié)果,請(qǐng)估算全校2000名學(xué)生種,大約有多少人最認(rèn)可微信這一新生事物?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一電線桿AB的影子分別落在了地上和墻上.同一時(shí)刻,小明豎起1米高的直桿MN,量得其影長(zhǎng)MF為0.5米,量得電線桿AB落在地上的影子BD長(zhǎng)3米,落在墻上的影子CD的高為2米.你能利用小明測(cè)量的數(shù)據(jù)算出電線桿AB的高嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】股民王曉宇上周五在股市以收盤價(jià)(股市收市時(shí)的價(jià)格)每股24元購(gòu)買進(jìn)某公司股票1000股,周六、周日股市不交易,在接下來(lái)的一周交易日內(nèi),王曉宇記下該股每日收盤價(jià)格相比前一天的漲跌情況如下表:(單位:元)

1)星期三收盤時(shí),每股是多少元?

2)已知小明父親買進(jìn)股票時(shí)付了1.5‰的手續(xù)費(fèi),賣出時(shí)需付成交額的1.5‰的手續(xù)費(fèi)和1‰的交易稅,如果他在周五收盤前將全部股票賣出,他的收益情況如何?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠AOB90°,射線OM平分∠AOCON平分∠BOC

1)如果∠BOC30°,求∠MON的度數(shù);

2)如果∠AOBα,∠BOC30°,其他條件不變,求∠MON的度數(shù);

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)化簡(jiǎn)求值: 2(x2yxy)3(x2yxy)4x2y,其中x-1,y.

(2)解答:老師在黑板上書(shū)寫了一個(gè)正確的演算過(guò)程,隨后用手掌捂住了一個(gè)多項(xiàng)式,形式如下:(3x25x7)=-2x23x6.求所捂的多項(xiàng)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,滑動(dòng)調(diào)節(jié)式遮陽(yáng)傘的立柱垂直于地面,為立柱上的滑動(dòng)調(diào)節(jié)點(diǎn),傘體的截面示意圖為,中點(diǎn),,,.當(dāng)點(diǎn)位于初始位置時(shí),點(diǎn)重合(圖2).根據(jù)生活經(jīng)驗(yàn),當(dāng)太陽(yáng)光線與垂直時(shí),遮陽(yáng)效果最佳.

(1)上午10:00時(shí),太陽(yáng)光線與地面的夾角為(圖3),為使遮陽(yáng)效果最佳,點(diǎn)需從上調(diào)多少距離?(結(jié)果精確到

(2)中午12:00時(shí),太陽(yáng)光線與地面垂直(圖4),為使遮陽(yáng)效果最佳,點(diǎn)在(1)的基礎(chǔ)上還需上調(diào)多少距離?(結(jié)果精確到

(參考數(shù)據(jù):,,,

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,點(diǎn)為二次函數(shù)圖象的頂點(diǎn),直線分別交軸正半軸,軸于點(diǎn),.

(1)判斷頂點(diǎn)是否在直線上,并說(shuō)明理由.

(2)如圖1,若二次函數(shù)圖象也經(jīng)過(guò)點(diǎn),,且,根據(jù)圖象,寫出的取值范圍.

(3)如圖2,點(diǎn)坐標(biāo)為,點(diǎn)內(nèi),若點(diǎn),都在二次函數(shù)圖象上,試比較的大小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】□ABCD,過(guò)點(diǎn)DDE⊥AB于點(diǎn)E,點(diǎn)F在邊CD上,DFBE,連接AF,BF.

1)求證:四邊形BFDE是矩形;

2)若CF3,BF4DF5,求證:AF平分∠DAB.

查看答案和解析>>

同步練習(xí)冊(cè)答案