【題目】如圖,△ABC的點(diǎn)A,C在⊙O上,⊙O與AB相交于點(diǎn)D,連接CD,∠A=30°,DC=.
(1)求圓心O到弦DC的距離;
(2)若∠ACB+∠ADC=180°,求證:BC是⊙O的切線.
【答案】(1);(2)詳見解析
【解析】
(1)連接OD,OC,過O作OE⊥OC于E,得到△OCD是等邊三角形,求得OD=OC=CD=,解直角三角形即可得到結(jié)論;
(2)由(1)得,△ODC是等邊三角形,求得∠OCD=60°,根據(jù)相似三角形的性質(zhì)得到∠A=∠BCD=30°,求得∠OCB=90°,于是得到BC是⊙O的切線.
解:(1)連接OD,OC,過O作OE⊥OC于E,
∵∠A=30°,
∴∠DOC=60°,
∵OD=OC,CD=,
∴△OCD是等邊三角形,
∴OD=OC=CD=,
∵OE⊥DC,
∴DE=,∠DEO=90°,∠DOE=30°,
∴OE=DE=,
∴圓心O到弦DC的距離為:;
(2)由(1)得,△ODC是等邊三角形,
∴∠OCD=60°,
∵∠ACB+∠ADC=180°,∠CDB+∠ADC=180°,
∴∠ACB=∠CDB,
∵∠B=∠B,
∴△ACB∽△CDB,
∴∠A=∠BCD=30°,
∴∠OCB=90°,
∴BC是⊙O的切線.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 如圖,圓O是以AB為直徑的△ABC的外接圓,D是劣弧的中點(diǎn),連AD并延長與過C點(diǎn)的切線交于點(diǎn)P,OD與BC相交于E;
(1)求證:OE=AC;
(2)求證:;
(3)當(dāng)AC=6,AB=10時,求切線PC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在△ABC中,AB=AC=5,BC=6,AD是BC邊上的中線,四邊形ADBE是平行四邊形.
(1)求證:四邊形ADBE是矩形;
(2)求矩形ADBE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,D、E為BC上的點(diǎn),AD平分∠BAE,CA=CD.
(1)求證:∠CAE=∠B;
(2)若∠B=50°,∠C=3∠DAB,求∠C的大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=3,BC=4,點(diǎn)D是AB的中點(diǎn),點(diǎn)P是直線BC上一點(diǎn),將△BDP沿DP所在的直線翻折后,點(diǎn)B落在B1處,若B1D⊥BC,則點(diǎn)P與點(diǎn)B之間的距離為( 。
A.1B.C.1或 3D.或5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“中國詩詞大會”帶著我們“賞中華詩詞、尋文化基因、品生活之美”,從古人的智慧和情懷中汲取營養(yǎng)、涵養(yǎng)心靈,其中的“飛花令”環(huán)節(jié),在廣大青少年中圈粉無數(shù).西安鐵一中分校初三二班的同學(xué)們準(zhǔn)備在班內(nèi)舉行“飛花令”比賽,組織過程如下:全班同學(xué)分成五個小組,每個小組派5名同學(xué)參加比賽,這5名同學(xué)依次從寫有“春”、“云”、“月”、“花”、“夜”的五張卡片中隨機(jī)摸出一張(不放回),5個小組中抽取相同字的同學(xué)進(jìn)行比賽(例如5名抽到“春”字同學(xué)進(jìn)行以“春”為主題字的飛花令比賽).第一小組的小麗和第二小組的小英分別是各自小組第一個抽取卡片的同學(xué).
(1)求小麗抽到“春”的概率;
(2)小麗和小英都比較擅長“春”和“月”為主題的詩句,求她們至少有一人抽到自己擅長的主題字的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列圖形都是由面積為1的正方形按一定的規(guī)律組成的,其中,第1個圖形中面積為1的正方形有9個,第2個圖形中面積為1的正方形有14個,……,按此規(guī)律,則第幾個圖形中面積為1的正方形的個數(shù)為2019個( )
A.400B.401C.402D.403
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)C是⊙O的直徑AB延長線上的一點(diǎn),且有BO=BD=BC.
(1)求證:CD是⊙O的切線;
(2)若半徑OB=2,求AD的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com