(2010•黔南州)為實(shí)現(xiàn)區(qū)域教育均衡發(fā)展,我市計(jì)劃對(duì)某縣A、B兩類薄弱學(xué)校全部進(jìn)行改造.根據(jù)預(yù)算,共需資金1575萬元.改造一所A類學(xué)校和兩所B類學(xué)校共需資金230萬元;改造兩所A類學(xué)校和一所B類學(xué)校共需資金205萬元.
(1)改造一所A類學(xué)校和一所B類學(xué)校所需的資金分別是多少萬元?
(2)若該縣的A類學(xué)校不超過5所,則B類學(xué)校至少有多少所?
(3)我市計(jì)劃今年對(duì)該縣A、B兩類學(xué)校共6所進(jìn)行改造,改造資金由國家財(cái)政和地方財(cái)政共同承擔(dān).若今年國家財(cái)政撥付的改造資金不超過400萬元;地方財(cái)政投入的改造資金不少于70萬元,其中地方財(cái)政投入到A、B兩類學(xué)校的改造資金分別為每所10萬元和15萬元.請(qǐng)你通過計(jì)算求出有幾種改造方案?
【答案】分析:(1)可根據(jù)“改造一所A類學(xué)校和兩所B類學(xué)校共需資金230萬元;改造兩所A類學(xué)校和一所B類學(xué)校共需資金205萬元”,列出方程組求出答案;
(2)根據(jù)“共需資金1575萬元”“A類學(xué)校不超過5所”,進(jìn)行判斷即可;
(3)要根據(jù)“若今年國家財(cái)政撥付的改造資金不超過400萬元;地方財(cái)政投入的改造資金不少于70萬元”來列出不等式組,判斷出不同的改造方案.
解答:解:(1)設(shè)改造一所A類學(xué)校和一所B類學(xué)校所需的改造資金分別為a萬元和b萬元.
依題意得:
解得:
答:改造一所A類學(xué)校和一所B類學(xué)校所需的改造資金分別為60萬元和85萬元;

(2)設(shè)該縣有A、B兩類學(xué)校分別為m所和n所.
則60m+85n=1575

∵A類學(xué)校不超過5所
∴-n+≤5
∴n≥15
即:B類學(xué)校至少有15所;

(3)設(shè)今年改造A類學(xué)校x所,則改造B類學(xué)校為(6-x)所,
依題意得:
解得:1≤x≤4
∵x取整數(shù)
∴x=1,2,3,4
答:共有4種方案.
點(diǎn)評(píng):解題關(guān)鍵是要讀懂題目的意思,根據(jù)題目給出的條件,找出合適的等量關(guān)系:
(1)“改造一所A類學(xué)校和兩所B類學(xué)校共需資金230萬元;改造兩所A類學(xué)校和一所B類學(xué)校共需資金205萬元”;
(2)“共需資金1575萬元”“A類學(xué)校不超過5所”;
(3)“若今年國家財(cái)政撥付的改造資金不超過400萬元;地方財(cái)政投入的改造資金不少于70萬元”,
列出方程組,再求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省蘇州市工業(yè)園區(qū)八年級(jí)第二學(xué)期數(shù)學(xué)卷 題型:單選題

(2010•黔南州)如果,則=( 。

A.B.1C.D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年江蘇省連云港市中考數(shù)學(xué)原創(chuàng)試卷大賽(30)(解析版) 題型:解答題

(2010•黔南州)如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A坐標(biāo)為(2,4),直線x=2與x軸相交于點(diǎn)B,連接OA,拋物線y=x2從點(diǎn)O沿OA方向平移,與直線x=2交于點(diǎn)P,頂點(diǎn)M到A點(diǎn)時(shí)停止移動(dòng).
(1)求線段OA所在直線的函數(shù)解析式;
(2)設(shè)拋物線頂點(diǎn)M的橫坐標(biāo)為m,
①用m的代數(shù)式表示點(diǎn)P的坐標(biāo);
②當(dāng)m為何值時(shí),線段PB最短;
(3)當(dāng)線段PB最短時(shí),相應(yīng)的拋物線上是否存在點(diǎn)Q,使△QMA的面積與△PMA的面積相等?若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年浙江省臺(tái)州市臨海市杜橋?qū)嶒?yàn)中學(xué)初三第四次統(tǒng)練數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•黔南州)如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A坐標(biāo)為(2,4),直線x=2與x軸相交于點(diǎn)B,連接OA,拋物線y=x2從點(diǎn)O沿OA方向平移,與直線x=2交于點(diǎn)P,頂點(diǎn)M到A點(diǎn)時(shí)停止移動(dòng).
(1)求線段OA所在直線的函數(shù)解析式;
(2)設(shè)拋物線頂點(diǎn)M的橫坐標(biāo)為m,
①用m的代數(shù)式表示點(diǎn)P的坐標(biāo);
②當(dāng)m為何值時(shí),線段PB最短;
(3)當(dāng)線段PB最短時(shí),相應(yīng)的拋物線上是否存在點(diǎn)Q,使△QMA的面積與△PMA的面積相等?若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年貴州省黔南州中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•黔南州)如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A坐標(biāo)為(2,4),直線x=2與x軸相交于點(diǎn)B,連接OA,拋物線y=x2從點(diǎn)O沿OA方向平移,與直線x=2交于點(diǎn)P,頂點(diǎn)M到A點(diǎn)時(shí)停止移動(dòng).
(1)求線段OA所在直線的函數(shù)解析式;
(2)設(shè)拋物線頂點(diǎn)M的橫坐標(biāo)為m,
①用m的代數(shù)式表示點(diǎn)P的坐標(biāo);
②當(dāng)m為何值時(shí),線段PB最短;
(3)當(dāng)線段PB最短時(shí),相應(yīng)的拋物線上是否存在點(diǎn)Q,使△QMA的面積與△PMA的面積相等?若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年天津市東麗區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

(2010•黔南州)如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A坐標(biāo)為(2,4),直線x=2與x軸相交于點(diǎn)B,連接OA,拋物線y=x2從點(diǎn)O沿OA方向平移,與直線x=2交于點(diǎn)P,頂點(diǎn)M到A點(diǎn)時(shí)停止移動(dòng).
(1)求線段OA所在直線的函數(shù)解析式;
(2)設(shè)拋物線頂點(diǎn)M的橫坐標(biāo)為m,
①用m的代數(shù)式表示點(diǎn)P的坐標(biāo);
②當(dāng)m為何值時(shí),線段PB最短;
(3)當(dāng)線段PB最短時(shí),相應(yīng)的拋物線上是否存在點(diǎn)Q,使△QMA的面積與△PMA的面積相等?若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案