【題目】如圖,在梯形ABCD中,AD∥BC,AD=8,BC=15,點E在BC邊上,且CE=2BE。點P以每秒1個單位長度的速度從點A出發(fā),沿AD向點D運動;點Q同時以每秒3個單位長度的速度從點C出發(fā),沿CB向點B運動,當(dāng)其中一個點停止運動時,另一個點也隨之停止運動。當(dāng)運動時間t=______秒時,以點P,Q,E,D為頂點的四邊形是平行四邊形。

【答案】1或

【解析】分析:由已知以點為頂點的四邊形是平行四邊形有兩種情況:(1)當(dāng)Q運動到EB之間;(2)當(dāng)Q運動到EC之間;根據(jù)平行四邊形的判定,由ADBC,所以當(dāng)時為平行四邊形.根據(jù)此設(shè)運動時間為t,列出關(guān)于t的方程求解.

詳解:由已知梯形,

(1)當(dāng)Q運動到EB之間,設(shè)運動時間為t,

AD=8,BC=15,CE=2BE,

EC=10,

則得:QE=PD,

3t10=8t,

解得:

(2)當(dāng)Q運動到EC之間,設(shè)運動時間為t,則得:DP′=EQ′,

103t=8t

解得:t=1,

故答案為:1

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)為了解本校學(xué)生對球類運動的愛好情況,采用抽樣的方法,從乒乓球、羽毛球、籃球和排球四個方面調(diào)查了若干名學(xué)生,在還沒有繪制成功的“折線統(tǒng)計圖”與“扇形統(tǒng)計圖”中,請你根據(jù)已提供的部分信息解答下列問題.
(1)在這次調(diào)查活動中,一共調(diào)查了名學(xué)生,并請補全統(tǒng)計圖.
(2)“羽毛球”所在的扇形的圓心角是度.
(3)若該校有學(xué)生1200名,估計愛好乒乓球運動的約有多少名學(xué)生?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,點D是AC邊上一點,AD=10,DC=8.以AD為直徑的⊙O與邊BC切于點E,且AB=BE

(1)求證:AB是⊙O的切線;
(2)過D點作DF∥BC交⊙O于點F,求線段DF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有兩個不透明的乒乓球盒,甲盒中裝有1個白球和2個紅球,乙盒中裝有2個白球和若干個紅球,這些小球除顏色不同外,其余均相同.若從乙盒中隨機摸出一個球,摸到紅球的概率為
(1)求乙盒中紅球的個數(shù);
(2)若先從甲盒中隨機摸出一個球,再從乙盒中隨機摸出一個球,請用樹形圖或列表法求兩次摸到不同顏色的球的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,直線a經(jīng)過正方形ABCD的頂點A,分別過頂點B,DDEa于點E,BFa于點F,若DE=4,BF=3,則EF的長為(  )

A. 1 B. 5 C. 7 D. 12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某實驗學(xué)校為開展研究性學(xué)習(xí),準備購買一定數(shù)量的兩人學(xué)習(xí)桌和三人學(xué)習(xí)桌,如果購買3張兩人學(xué)習(xí)桌,1張三人學(xué)習(xí)桌需220元;如果購買2張兩人學(xué)習(xí)桌,3張三人學(xué)習(xí)桌需310元.
(1)求兩人學(xué)習(xí)桌和三人學(xué)習(xí)桌的單價;
(2)學(xué)校欲投入資金不超過6000元,購買兩種學(xué)習(xí)桌共98張,以至少滿足248名學(xué)生的需求,設(shè)購買兩人學(xué)習(xí)桌x張,購買兩人學(xué)習(xí)桌和三人學(xué)習(xí)桌的總費用為W 元,求出W與x的函數(shù)關(guān)系式;求出所有的購買方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,C,D為線段AB上的兩點,M,N分別是線段AC,BD的中點.

(1)如果CD=5cm,MN=8cm,求AB的長;

(2)如果AB=a,MN=b,求CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為豐富學(xué)生的學(xué)習(xí)生活,某校九年級組織學(xué)生參加春游活動,所聯(lián)系的旅行收費標準如下:
春游活動結(jié)束后,該班共支付給該旅行社活動費用2800元,請問該班共有多少人參加這次春游活動?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,四邊形ABCD為正方形,已知點A(﹣6,0),D(﹣7,3),點B、C在第二象限內(nèi).

(1)求點B的坐標。

(2)將正方形ABCD以每秒1個單位的速度沿x軸向右平移t秒,若存在某一時刻t,使在第一象限內(nèi)點B、D兩點的對應(yīng)點B′、D′正好落在某反比例函數(shù)的圖象上,請求出此時t的值以及這個反比例函數(shù)的解析式;

(3)在(2)的情況下,問是否存在x軸上的點P和反比例函數(shù)圖象上的點Q,使得以P、Q、B′、D′四個點為頂點的四邊形是平行四邊形?若存在,請直接寫出符合題意的點P、Q的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案