【答案】
分析:(1)求m、k兩個(gè)未知字母,把A、B兩點(diǎn)代入反比例函數(shù)即可;
(2)按圖中所給情況,M、N有可能都在坐標(biāo)軸的正半軸,也有可能在坐標(biāo)軸的負(fù)半軸,平移應(yīng)找到對(duì)應(yīng)點(diǎn),看是如何平移得到.求出直線(xiàn)MN的函數(shù)表達(dá)式,需求出A,B兩點(diǎn)的坐標(biāo).
解答:解:(1)由題意可知,m(m+1)=(m+3)(m-1),解得m=3,(2分)
∴A(3,4),B(6,2),
∴k=4×3=12;(3分)
(2)存在兩種情況,如圖:
①當(dāng)M點(diǎn)在x軸的正半軸上,N點(diǎn)在y軸的正半軸上時(shí),設(shè)M
1點(diǎn)坐標(biāo)為(x
1,0),
N
1點(diǎn)坐標(biāo)為(0,y
1),
∵四邊形AN
1M
1B為平行四邊形,
∴線(xiàn)段N
1M
1可看作由線(xiàn)段AB向左平移3個(gè)單位,再向下平移2個(gè)單位得到的,
(也可看作向下平移2個(gè)單位,再向左平移3個(gè)單位得到的)
由(1)知A點(diǎn)坐標(biāo)為(3,4),B點(diǎn)坐標(biāo)為(6,2),
∴N
1點(diǎn)坐標(biāo)為(0,4-2),即N
1(0,2),
M
1點(diǎn)坐標(biāo)為(6-3,0),即M
1(3,0),(4分)
設(shè)直線(xiàn)M
1N
1的函數(shù)表達(dá)式為y=k
1x+2,
把x=3,y=0代入,解得
,
∴直線(xiàn)M
1N
1的函數(shù)表達(dá)式為
;(5分)
②當(dāng)M點(diǎn)在x軸的負(fù)半軸上,N點(diǎn)在y軸的負(fù)半軸上時(shí),
設(shè)M
2點(diǎn)坐標(biāo)為(x
2,0),N
2點(diǎn)坐標(biāo)為(0,y
2),
∵AB∥N
1M
1,AB∥M
2N
2,AB=N
1M
1,AB=M
2N
2,
∴N
1M
1∥M
2N
2,N
1M
1=M
2N
2,
∴四邊形N
1M
2N
2M
1為平行四邊形,
∴點(diǎn)M
1、M
2與線(xiàn)段N
1、N
2關(guān)于原點(diǎn)O成中心對(duì)稱(chēng),
∴M
2點(diǎn)坐標(biāo)為(-3,0),N
2點(diǎn)坐標(biāo)為(0,-2),(6分)
設(shè)直線(xiàn)M
2N
2的函數(shù)表達(dá)式為y=k
2x-2,
把x=-3,y=0代入,解得
,
∴直線(xiàn)M
2N
2的函數(shù)表達(dá)式為
.
所以,直線(xiàn)MN的函數(shù)表達(dá)式為
或
.(7分)
點(diǎn)評(píng):過(guò)某個(gè)點(diǎn),這個(gè)點(diǎn)的坐標(biāo)應(yīng)適合這個(gè)函數(shù)解析式.平行四邊形從動(dòng)態(tài)來(lái)看也可以是由一條線(xiàn)段平移得到的.