如圖,已知二次函數(shù)y=x2+bx+c的圖象與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)P,頂點(diǎn)為C(1,-2).
(1)求此函數(shù)的關(guān)系式;
(2)作點(diǎn)C關(guān)于x軸的對(duì)稱(chēng)點(diǎn)D,順次連接A,C,B,D.若在拋物線(xiàn)上存在點(diǎn)E,使直線(xiàn)PE將四邊形ABCD分成面積相等的兩個(gè)四邊形,求點(diǎn)E的坐標(biāo);
(3)在(2)的條件下,拋物線(xiàn)上是否存在一點(diǎn)F,使得△PEF是以P為直角頂點(diǎn)的直角三角形?若存在,求出點(diǎn)F的坐標(biāo)及△PEF的面積;若不存在,請(qǐng)說(shuō)明理由.

【答案】分析:(1)將頂點(diǎn)坐標(biāo)C(1,-2)代入y=x2+bx+c即可求得此二次函數(shù)的關(guān)系式;
(2)先求出直線(xiàn)PM的解析式,然后與二次函數(shù)聯(lián)立即可解得點(diǎn)E的坐標(biāo);
(3)根據(jù)三角形相似的性質(zhì)先求出GP=GF,求出F點(diǎn)的坐標(biāo),進(jìn)而求得△PEF的面積.
解答:解:(1)∵y=x2+bx+c的頂點(diǎn)為(1,-2).
∴y=(x-1)2-2,y=x2-2x-1;

(2)設(shè)直線(xiàn)PE對(duì)應(yīng)的函數(shù)關(guān)系式為y=kx+b,根據(jù)A,B關(guān)于對(duì)稱(chēng)軸對(duì)稱(chēng),
可以得出AC=CB,AD=BD,點(diǎn)C關(guān)于x軸的對(duì)稱(chēng)點(diǎn)D,
故AC=BC=AD=BD,
則四邊形ACBD是菱形,
故直線(xiàn)PE必過(guò)菱形ACBD的對(duì)稱(chēng)中心M.            
由P(0,-1),M(1,0),

從而得y=x-1,
設(shè)E(x,x-1)代入y=x2-2x-1得x-1=x2-2x-1,
解得x1=0,x2=3,
根據(jù)題意得點(diǎn)E(3,2);

(3)假設(shè)存在這樣的點(diǎn)F,可設(shè)F(x,x2-2x-1),
過(guò)點(diǎn)F做FG⊥y軸,垂足為G點(diǎn).
在Rt△POM和Rt△FGP中,
∵∠OMP+∠OPM=90°,∠FPG+∠OPM=90°,
∠OMP=∠FPG,
又∠MOP=∠PGF,
∴△POM∽△FGP

∵OM=1,OP=1,
∴GP=GF,即-1-(x2-2x-1)=x,
解得x1=0,x2=1,
根據(jù)題意得F(1,-2)
以上各步均可逆,故點(diǎn)F(1,-2)即為所求,
S△PEF=S△MFP+S△MFE=2×1×2×2=3.
點(diǎn)評(píng):本題是二次函數(shù)的綜合題,其中涉及到的知識(shí)點(diǎn)有拋物線(xiàn)的公式的求法及三角形的相似等知識(shí)點(diǎn),是各地中考的熱點(diǎn)和難點(diǎn),解題時(shí)注意數(shù)形結(jié)合等數(shù)學(xué)思想的運(yùn)用,同學(xué)們要加強(qiáng)訓(xùn)練.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知二次函數(shù)圖象的頂點(diǎn)坐標(biāo)為C(1,1),直線(xiàn)y=kx+m的圖象與該二次函數(shù)的圖象交于A、B兩點(diǎn),其中A點(diǎn)坐標(biāo)為(
5
2
,
13
4
),B點(diǎn)在y軸上,直線(xiàn)與x軸的交點(diǎn)為F,P為線(xiàn)段AB上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P與A、B不重合),過(guò)P作x軸的垂線(xiàn)與這個(gè)二次函數(shù)的圖象交于E點(diǎn).
(1)求k,m的值及這個(gè)二次函數(shù)的解析式;
(2)設(shè)線(xiàn)段PE的長(zhǎng)為h,點(diǎn)P的橫坐標(biāo)為x,求h與x之間的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;
(3)D為直線(xiàn)AB與這個(gè)二次函數(shù)圖象對(duì)稱(chēng)軸的交點(diǎn),在線(xiàn)段AB上是否存在點(diǎn)P,使得以點(diǎn)P、E、D為頂點(diǎn)的精英家教網(wǎng)三角形與△BOF相似?若存在,請(qǐng)求出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知二次函數(shù)y=ax2+bx+3(a≠0)的圖象與x軸交于點(diǎn)A(-1,0)和點(diǎn)B(3,0)兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸交于點(diǎn)C.
(1)求此二次函數(shù)的解析式,并寫(xiě)出它的對(duì)稱(chēng)軸;
(2)若直線(xiàn)l:y=kx(k>0)與線(xiàn)段BC交于點(diǎn)D(不與點(diǎn)B,C重合),則是否存在這樣的直線(xiàn)l,使得以B,O,D為頂點(diǎn)的三角形與△BAC相似?若存在,求出點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)若直線(xiàn)l′:y=m與該拋物線(xiàn)交于M、N兩點(diǎn),且以MN為直徑的圓與x軸相切,求該圓半徑的長(zhǎng)度.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知二次函數(shù)圖象的頂點(diǎn)坐標(biāo)為C(1,0),直線(xiàn)y=x+b與該二次函數(shù)的圖象交于A、B兩點(diǎn),其中點(diǎn)A的坐標(biāo)為(3,4),點(diǎn)B在y軸上.點(diǎn)P為線(xiàn)段AB上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P與A、B不重合),過(guò)點(diǎn)P作x軸的垂線(xiàn)與該二次函數(shù)的圖象交于點(diǎn)E.
(1)求b的值及這個(gè)二次函數(shù)的關(guān)系式;
(2)設(shè)線(xiàn)段PE的長(zhǎng)為h,點(diǎn)P的橫坐標(biāo)為x,求h與x之間的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;
(3)若點(diǎn)D為直線(xiàn)AB與該二次函數(shù)的圖象對(duì)稱(chēng)軸的交點(diǎn),則四邊形DCEP能否構(gòu)成平行四邊形?如果能,請(qǐng)求出此時(shí)P點(diǎn)的坐標(biāo);如果不能,請(qǐng)說(shuō)明理由.
(4)以PE為直徑的圓能否與y軸相切?如果能,請(qǐng)求出點(diǎn)P的坐標(biāo);如果不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知二次函數(shù)y=ax2-4x+c的圖象與坐標(biāo)軸交于點(diǎn)A(-1,0)和點(diǎn)C(0,-5).
(1)求該二次函數(shù)的解析式和它與x軸的另一個(gè)交點(diǎn)B的坐標(biāo).
(2)在上面所求二次函數(shù)的對(duì)稱(chēng)軸上存在一點(diǎn)P(2,-2),連接OP,找出x軸上所有點(diǎn)M的坐標(biāo),使得△OPM是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•衡水一模)如圖,已知二次函數(shù)y=-
12
x2+bx+c
的圖象經(jīng)過(guò)A(2,0)、B(0,-6)兩點(diǎn).
(1)求這個(gè)二次函數(shù)的解析式;
(2)設(shè)該二次函數(shù)圖象的對(duì)稱(chēng)軸與x軸交于點(diǎn)C,連接BA、BC,求△ABC的面積;
(3)若拋物線(xiàn)的頂點(diǎn)為D,在y軸上是否存在一點(diǎn)P,使得△PAD的周長(zhǎng)最?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案