如圖,已知直線MN經(jīng)過(guò)⊙O上的點(diǎn)A,點(diǎn)B在MN上,連OB交⊙O于C點(diǎn),且點(diǎn)C是OB的中點(diǎn),AC=
1
2
OB,若點(diǎn)P是⊙O上的一個(gè)動(dòng)點(diǎn),當(dāng)AB=2
3
時(shí),求△APC的面積的最大值.
連接OA;
∵C是OB的中點(diǎn),且AC=
1
2
OB,
∴∠OAB=90°(2分),
∴∠O=60°,
∴OA=AC=2;
過(guò)點(diǎn)O作OE⊥AC于E,延長(zhǎng)EO交圓于點(diǎn)F,則P(F)E是△PAC的AC邊上的最大的高;(1分)
在△OAE中,OA=2,∠AOE=30°,
∴OE=
3
(1分),
∴PE=2+
3
(1分),
S△PAC=
1
2
AC•PE=
1
2
×2×(2+
3
)
,
S△PAC=2+
3
.(1分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知如圖,正方形AEDG的兩個(gè)頂點(diǎn)A、D都在⊙O上,AB為⊙O直徑,射線ED與⊙O的另一個(gè)交點(diǎn)為C,試判斷線段AC與線段BC的關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖所示,PA,PB是⊙O的切線,AC是⊙O的直徑,∠P=40°,則∠BAC=______度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:如圖1,把矩形紙片ABCD折疊,使得頂點(diǎn)A與邊DC上的動(dòng)點(diǎn)P重合(P不與點(diǎn)D,C重合),MN為折痕,點(diǎn)M,N分別在邊BC,AD上,連接AP,MP,AM,AP與MN相交于點(diǎn)F.⊙O過(guò)點(diǎn)M,C,P.
(1)請(qǐng)你在圖1中作出⊙O(不寫作法,保留作圖痕跡);
(2)
AF
AN
AP
AD
是否相等?請(qǐng)你說(shuō)明理由;
(3)隨著點(diǎn)P的運(yùn)動(dòng),若⊙O與AM相切于點(diǎn)M時(shí),⊙O又與AD相切于點(diǎn)H.設(shè)AB為4,請(qǐng)你通過(guò)計(jì)算,畫(huà)出這時(shí)的圖形.(圖2,3供參考)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,AB是⊙O的直徑,AD是弦,∠DAB=22.5°,延長(zhǎng)AB到點(diǎn)C,使得∠ACD=45°
(1)試判斷CD和⊙O的位置關(guān)系,并說(shuō)明理由;
(2)若AB=4,求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,AB、AC與⊙O相切于B、C,∠A=50°,點(diǎn)P是圓上異于B、C的一動(dòng)點(diǎn),則∠BPC的度數(shù)是( 。
A.65°B.115°C.65°和115°D.130°和50°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知AB是⊙O的直徑,且AB為6,過(guò)B點(diǎn)作⊙O的切線CB與⊙O相切于點(diǎn)B,在半圓AB上有一點(diǎn)D使∠ABD=30°,BD的中點(diǎn)為E,連接OE并延長(zhǎng)OE與BC交于點(diǎn)C,連接CD.
(1)求證:CD是⊙O的切線.
(2)四邊形ABCD的周長(zhǎng)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,兩個(gè)同心圓的半徑分別是3cm和6cm,大⊙O的弦MN=6
3
cm,試判斷MN與小⊙O的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知點(diǎn)O為Rt△ABC斜邊上一點(diǎn),以點(diǎn)O為圓心,OA長(zhǎng)為半徑的⊙O與BC相切于點(diǎn)E,與AC相交于點(diǎn)D,連接AE.
(1)求證:AE平分∠CAB;
(2)當(dāng)AE=EC,AC=3時(shí),求⊙O的半徑.

查看答案和解析>>

同步練習(xí)冊(cè)答案