已知:如圖,在正方形ABCD中,E、F分別是BC、DC邊上的點,且AE⊥EF于點E.
(1)延長EF交正方形ABCD的外角平分線CP于點P,試判斷AE與EP的大小關(guān)系,并說明理由;
(2)在AB邊上是否存在一點M,使得四邊形DMEP是平行四邊形?若存在,請給予證明;若不存在,請說明理由.

【答案】分析:(1)在AB上取BN=BE,連接EH,根據(jù)已知及正方形的性質(zhì)利用ASA判定△AHE≌△ECP,從而得到AE=EP;
(2)先證△DAM≌△ABE,進而可得四邊形DMEP是平行四邊形.
解答:(1)結(jié)論:AE=PE.理由如下:(1分)
在AB上截取BN=BE.(2分)
∵四邊形ABCD為正方形,∴AB=BC,∠B=90°.
∴AN=EC,∠1=∠2=45°.
∴∠4=135°.
∵CP為正方形ABCD的外角平分線,
∴∠PCE=135°.∴∠PCE=∠4.
∵∠AEP=90°,∴∠BEA+∠3=90°.
∵∠BAE+∠BEA=90°,∴∠3=∠BAE.
∴△ANE≌△ECP.
∴AE=EP.(3分)

(2)解:存在點M使得四邊形DMEP是平行四邊形.(4分)
理由如下:過點D作DM∥PE,交AE于點K,交AB于點M,連接ME、DP.(5分)
∴∠AKD=∠AEP=90°.
∵∠BAD=90°,∴∠ADM+∠AMD=90°,∠MAK+∠AMD=90°.
∴∠ADM=∠MAK.
∵AD=AB,∠B=∠DAB,
∴△AMD≌△BEA.(6分)
∴DM=AE.∴DM=EP.
∴四邊形DMEP為平行四邊形.(7分)
點評:此題主要考查了正方形的性質(zhì),全等三角形的判定與性質(zhì),以及平行四邊形的判定,解決問題的關(guān)鍵是要熟練掌握正方形的性質(zhì)及三角形相似的判定和性質(zhì),
(1)中求線段的比,一般會與相似三角形掛勾;
(2)中增加了角平分線的相關(guān)性質(zhì),通過目測可猜想兩條線段相等,從而通過構(gòu)造全等三角形的判定求解或是利用角平分線的性質(zhì)定理求解;
(3)中則考查了平行四邊形的識別.
命題規(guī)律與趨勢:本題起點不難,采用低起點、寬入口、坡度緩、步步高、窄出口”的分層考查的特點,考查學(xué)生的綜合運用知識解決總理的能力.以正方形為依托,以點的變化形式綜合考查了三角形相似、三角形全等、角平分線性質(zhì)、平行四邊形的識別等知識.圖中正確解讀信息、找到正確的思路是解決問題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,在正方形ABCD中,E是CB延長線上一點,EB=
12
BC,如果F是AB的中點,請你在正方形ABCD上找一點,與F點連接成線段,并說明它和AE相等的理由.
解:連接
 
,則
 
=AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,在正方形ABCD外取一點E,連接AE、BE、DE.過點A作AE的垂線交DE于點P.若AE=AP=1,PB=
5
.下列結(jié)論:
①△APD≌△AEB;
②點B到直線AE的距離為
2
;
③EB⊥ED;
④S△APD+S△APB=1+
6
;
⑤S正方形ABCD=4+
6
.其中正確結(jié)論的序號是( 。
A、①③④B、①②⑤
C、③④⑤D、①③⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,在正方形ABCD中,P是BC上的點,且BP=3PC,Q是CD的中點.△ADQ與△QCP是否相似?
為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,在正方形ABCD中,AB=8,點E在邊AB上點,CE的垂直平分線FP 分別交AD精英家教網(wǎng)、CE、CB于點F、H、G,交AB的延長線于點P.
(1)求證:△EBC∽△EHP;
(2)設(shè)BE=x,BP=y,求y與x之間的函數(shù)解析式,并寫出定義域;
(3)當(dāng)BG=
74
時,求BP的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,在正方形ABCD中,E、F分別是AD、CD的中點.
(1)線段AF與BE有何關(guān)系.說明理由;
(2)延長AF、BC交于點H,則B、D、G、H這四個點是否在同一個圓上.說明理由.

查看答案和解析>>

同步練習(xí)冊答案