精英家教網 > 初中數學 > 題目詳情
幾何模型:
條件:如圖1,A、B是直線l同旁的兩個定點.

問題:在直線l上確定一點P,使PA+PB的值最。
方法:作點A關于直線l的對稱點A′,連接A′B交l于點P,則PA+PB=A′B的值最。ú槐刈C明).
模型應用:
(1)如圖2,正方形ABCD的邊長為2,E為AB的中點,P是AC上一動點.連接BD,由正方形對稱性可知,B與D關于直線AC對稱.連接ED交AC于P,則PB+PE的最小值是
5
5

(2)如圖3,⊙O的半徑為2,點A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一動點,求PA+PC的最小值是
2
3
2
3

(3)如圖4,∠AOB=45°,P是∠AOB內一點,PO=5,Q、R分別是OA、OB上的動點,求△PQR周長的最小值.
分析:(1)由題意易得PB+PE=PD+PE=DE,在△ADE中,根據勾股定理求得即可;
(2)作A關于OB的對稱點A′,連接A′C,交OB于P,求A′C的長,即是PA+PC的最小值;
(3)作出點P關于直線OA的對稱點M,關于直線OB的對稱點N,連接MN,它分別與OA,OB的交點Q、R,這時三角形PEF的周長=MN,只要求MN的長就行了.
解答:解:(1)∵四邊形ABCD是正方形,
∴AC垂直平分BD,
∴PB=PD,
由題意易得:PB+PE=PD+PE=DE,
在△ADE中,根據勾股定理得,DE=
22+12
=
5
;

(2)作A關于OB的對稱點A′,連接A′C,交OB于P,
PA+PC的最小值即為A′C的長,
∵∠AOC=60°
∴∠A′OC=120°
作OD⊥A′C于D,則∠A′OD=60°
∵OA′=OA=2
∴A′D=
3
,
∴A′C=2
3
,即PA+PC的最小值是2
3
;

(3)分別作點P關于OA、OB的對稱點M、N,連接OM、ON、MN,MN交OA、OB于點Q、R,連接PR、PQ,此時△PQR周長的最小值等于MN.
由軸對稱性質可得,OM=ON=OP=5,∠MOA=∠POA,∠NOB=∠POB,
∴∠MON=2∠AOB=2×45°=90°,
在Rt△MON中,MN=
OM2+ON2
=
52+52
=5
2

即△PQR周長的最小值等于5
2

故答案為:
5
;2
3
點評:此題綜合性較強,主要考查有關軸對稱--最短路線的問題,綜合應用了正方形、圓、等腰直角三角形的有關知識.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網幾何模型:條件:如圖,A、B是直線l同旁的兩個定點.
問題:在直線l上確定一點P,使PA+PB的值最小.
方法:作點A關于直線l的對稱點A′,連接A′B交l于點P,則PA+PB=A′P+PB=A′B,
由“兩點之間,線段最短”可知,點P即為所求的點.
模型應用:
(1)如圖1,正方形ABCD的邊長為2,E為AB的中點,P是AC上一動點.則PB+PE的最小值是
 
;
(2)如圖2,∠AOB=45°,P是∠AOB內一定點,PO=10,Q、R分別是OA、OB上的動點,求△PQR周長的最小值.(要求畫出示意圖,寫出解題過程)
精英家教網

查看答案和解析>>

科目:初中數學 來源: 題型:

幾何模型:
條件:如圖,A、B是直線l同旁的兩個定點.
問題:在直線l上確定一點P,使PA+PB的值最。
方法:作點A關于直線l的對稱點A,連接A′B交l于點P,則PA+PB=A′B的值最。ú槐刈C明).
模型應用:
(1)如圖1,正方形ABCD的邊長為2,E為AB的中點,P是AC上一動點.連接BD,由正方形對稱性可知,B與D關于直線AC對稱.連接ED交AC于P,則PB+PE的最小值是
5
5
;
(2)如圖2,⊙O的半徑為2,點A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一動點,求PA+PC的最小值;
(3)如圖3,AB、CD是半徑為5的⊙O的兩條弦,AB=8,CD=6,MN是直徑,AB⊥MN于點E,CD⊥MN于點F,P為EF上的任意一點,求PA+PC的最小值.

查看答案和解析>>

科目:初中數學 來源: 題型:閱讀理解

閱讀理解題:
【幾何模型】
條件:如圖1,A、B是直線l同旁的兩個定點.
問題:在直線l上確定一點P,使PA+PB的值最。
方法:作點A關于直線l的對稱點A′,連接A′B交l于點P,則PA+PB=A′P+PB=A′B,
由“兩點之間,線段最短”可知,點P即為所求的點.

【模型應用】
如圖2所示,兩個村子A、B在一條河CD的同側,A、B兩村到河邊的距離分別為AC=1千米,BD=3千米,CD=3千米.現要在河邊CD上建造一水廠,向A、B兩村送水,鋪設水管的工程費用為每千米15000元,請你在CD上選擇水廠位置,使鋪設水管的費用最省,并求出最省的鋪設水管的費用W.

查看答案和解析>>

科目:初中數學 來源:期中題 題型:解答題

閱讀理解題:【幾何模型】
條件:如圖,A、B是直線l同旁的兩個定點,問題:在直線l上確定一點P,使PA+PB的值最小。
方法:作點A關于直線l的對稱點A′,連接A′B交l于點P,則PA+PB=A′P+PB=A′B,由“兩點之間,線段最短”可知,點P即為所求的點。
【模型應用】
(1)如圖1,正方形ABCD的邊長為2,E為AB的中點,P是AC上一動點.求出PB+PE的最小值。(畫出示意圖,并解答)
(2)如圖2,∠AOB=45°,P是∠AOB內一定點,PO=10,Q、R分別是OA、OB上的動點,求△PQR周長的最小值。(要求畫出示意圖,寫出解題過程)

查看答案和解析>>

同步練習冊答案