【題目】在大課間活動中,體育老師隨機抽取了九年級甲、乙兩班部分女生進行仰臥起坐的測試,并對成績進行統(tǒng)計分析,繪制了頻數(shù)分布表和頻數(shù)直方圖,請你根據(jù)圖表中的信息完成下列問題:

1)頻數(shù)分布表中a= ,b= ;

2)將頻數(shù)直方圖補充完整;

3)如果該校九年級共有女生360人,估計仰臥起坐能夠一分鐘完成30次或30次以上的女學生有多少人?

4)已知第一組有兩名甲班學生,第四組中只有一名乙班學生,老師隨機從這兩個組中各選一名學生談心得體會,則所選兩人正好都是甲班學生的概率是多少?

【答案】10.3,4;(2)見解析;(3198;(4.

【解析】

1)由第一組的頻數(shù)和頻率得到總人數(shù),乘以0.2即可得b的值,用10.150.350.20可得a的值;

2)根據(jù)表格中第二組的數(shù)據(jù)將直方圖補充完整;
3)利用樣本估計總體的知識求解即可得答案;
4)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖得所有等可能的結果與所選兩人正好都是甲班學生的情況,再利用概率公式即可求答案.

解:(1)a=10.150.350.20=0.3;

總人數(shù)為:3÷0.15=20(),

b=20×0.20=4();

故答案為:0.3,4;

2)補全統(tǒng)計圖如圖:

(3)估計仰臥起坐能夠一分鐘完成3030次以上的女學生有:360×(0.35+0.20)=198()

(4)畫樹狀圖得:

∵共有12種等可能的結果,所選兩人正好都是甲班學生的有6種情況,

∴所選兩人正好都是甲班學生的概率P=.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖所示的兩條拋物線的解析式分別是y1=-ax2ax1,y2ax2ax1(其中a為常數(shù),且a0)

1)請寫出三條與上述拋物線有關的不同類型的結論;

2)當a時,設y1=-ax2ax1x軸分別交于M,N兩點(MN的左邊),y2ax2ax1x軸分別交于EF兩點(EF的左邊),觀察MN,E,F四點坐標,請寫出一個你所得到的正確結論,并說明理由;

3)設上述兩條拋物線相交于AB兩點,直線l,l1,l2都垂直于x軸,l1,l2分別經(jīng)過A,B兩點,l在直線l1,l2之間,且l與兩條拋物線分別交于C,D兩點,求線段CD的最大值?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知等腰RtABC和等腰RtAED中,∠ACB=∠AED=90°,且AD=AC

1)發(fā)現(xiàn):如圖1,當點EAB上且點C和點D重合時,若點M、N分別是DB、EC的中點,則MNEC的位置關系是   ,MNEC的數(shù)量關系是   

2)探究:若把(1)小題中的△AED繞點A旋轉一定角度,如圖2所示,連接BDEC,并連接DB、EC的中點M、N,則MNEC的位置關系和數(shù)量關系仍然能成立嗎?若成立,請以逆時針旋轉45°得到的圖形(圖3)為例給予證明位置關系成立,以順時針旋轉45°得到的圖形(圖4)為例給予證明數(shù)量關系成立,若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我市某中學藝術節(jié)期間,向全校學生征集書畫作品.九年級美術王老師從全年級14個班中隨機抽取了4個班,對征集到的作品的數(shù)量進行了分析統(tǒng)計,制作了如下兩幅不完整的統(tǒng)計圖.

(1)王老師采取的調(diào)查方式是 (填“普查”或“抽樣調(diào)查”),王老師所調(diào)查的4個班征集到作品共 件,其中b班征集到作品 件,請把圖2補充完整;

(2)王老師所調(diào)查的四個班平均每個班征集作品多少件?請估計全年級共征集到作品多少件?

(3)如果全年級參展作品中有5件獲得一等獎,其中有3名作者是男生,2名作者是女生.現(xiàn)在要在其中抽兩人去參加學?偨Y表彰座談會,請直接寫出恰好抽中一男一女的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解方程:

142x12360;

2xx3+x30

33x214x;

4)(2x3252x3+60

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖將矩形繞點順時針旋轉得矩形,若,,則圖中陰影部分的面積為__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD與正方形EFGH是位似形,已知A0,5),D0,3),E0,1),H0,4),則位似中心的坐標是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC內(nèi)接于⊙O,ACBC,CD是⊙O的直徑,與AB相交于點G,過點DEFAB,分別交CA、CB的延長線于點E、F,連接BD.

1)求證:EF是⊙O的切線;

2)求證:BD2ACBF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】綜合與探究

如圖1,拋物線軸交于,兩點,與軸交于點

1)求拋物線的表達式;

2)點是拋物線上異于點的動點,若的面積與的面積相等,求出點的坐標;

3)如圖2,當的中點時,過點軸,交拋物線于點.連接,將沿軸向左平移個單位長度(),將平移過程中重疊部分的面積記為,求的函數(shù)關系式.

查看答案和解析>>

同步練習冊答案