設△ABC 的邊長 BC=a,CA=bAB=c,內切圓 I

BC,AC,AB 分別相切于點D,E,F 求證:AE=AF=S-a,BF=

BD=S-b,CD=CE=S-c

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,△ABC是正三角形,曲線CDEFG…叫做“正三角形的漸開線”,曲線的各部分為圓。
(1)圖中已經有4段圓弧,請接著畫出第5段圓弧GH;
(2)設△ABC的邊長為a,則第1段弧的長是
 
,第5段弧的長是
 
.前5段弧長的和(即曲線CDEFGH的長)是
 

(3)類似地有“正方形的漸開線”,“正五邊形的漸開線”,…,邊長為a的正方形的漸開線的前5段弧長的和是
 
;
(4)猜想,①邊長為a的正n邊形的前5段弧長的和是
 

②邊長為a的正n邊形的前m段弧長的和是
 

精英家教網

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

△ABC是一塊等邊三角形的廢鐵片,利用其剪裁一個正方形DEFG,使正方形的一條邊DE落在BC上,頂點F、G分別落在AC、AB上.
Ⅰ、證明:△BDG≌△CEF;
Ⅱ、探究:怎樣在鐵片上準確地畫出正方形.
小聰和小明各給出了一種想法,請你在Ⅱa和Ⅱb的兩個問題中選擇一個你喜歡的問題解答.如果兩題都解,只以Ⅱa的解答記分.
Ⅱa、小聰想:要畫出正方形DEFG,只要能計算出正方形的邊長就能求出BD和CE的長,從而確定D點和E點,再畫正方形DEFG就容易了.
設△ABC的邊長為2,請你幫小聰求出正方形的邊長.(結果用含根號的式子表示,不要求分母有理化)
Ⅱb、小明想:不求正方形的邊長也能畫出正方形.具體作法是:
①在AB邊上任取一點G′,如圖作正方形G′D′E′F′;
②連接BF′并延長交AC于F;
③作FE∥F′E′交BC于E,F(xiàn)G∥F′G′交AB于G,GD∥G′D′交BC于D,則四精英家教網邊形DEFG即為所求.
你認為小明的作法正確嗎?說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

(2012•青島模擬)同學們已經認識了很多正多邊形,現(xiàn)以正六邊形為例再介紹與正多邊形相關的幾個概念.如正六邊形ABCDEF各邊對稱軸的交點O,又稱正六邊形的中心,其中OA稱正六邊形的半徑,通常用R表示,∠AOB稱為中心角,顯然.提出問題:正多邊形內任意一點到各邊距離之和與這個正多邊形的半徑R和中心角有什么關系?
探索發(fā)現(xiàn):
(1)為了解決這個問題,我們不妨從最簡單的正多邊形--正三角形入手.
如圖①,△ABC是正三角形,半徑OA=R,∠AOB是中心角,P是△ABC內任意一點,P到△ABC各邊距離分別為h1、h2、h3 ,確定h1+h2+h3的值與△ABC的半徑R及中心角的關系.
解:設△ABC的邊長是a,面積為S,顯然S=
1
2
a(h1+h2+h3
O為△ABC的中心,連接OA、OB、OC,它們將△ABC分成三個全等的等腰三角形,過點O作OM⊥AB,垂足為M,Rt△AOM中,易知
OM=OAcos∠AOM=Rcos
1
2
∠AOB=Rcos
1
2
×120°=Rcos60°,
AM=OAsin∠AOM=Rsin
1
2
∠AOB=Rsin
1
2
×120°=Rcos60°
∴AB=a=2AM=2Rsin60°
∴S△AOB=
1
2
AB×OM=
1
2
×2Rsin60°•Rcos60°=R2sin60°cos60°
∴S△ABC=3S△AOB=3R2sin60°cos60°
1
2
a(h1+h2+h3)=3R2sin60°cos60°
即:
1
2
×2Rsin60°(h1+h2+h3)=3R2sin60°cos60°
∴h1+h2+h3=3Rcos60°
(2)如圖②,五邊形ABCDE是正五邊形,半徑是R,P是正五邊形ABCDE內任意一點,P到五邊形ABCDE各邊距離分別為h1、h2、h3、h4、h5,參照(1)的探索過程,確定h1+h2+h3+h4+h5的值與正五邊形ABCDE的半徑R及中心角的關系.
(3)類比上述探索過程,直接填寫結論
正六邊形(半徑是R)內任意一點P到各邊距離之和 h1+h2+h3+h4+h5+h6=
6Rcos30°
6Rcos30°

正八邊形(半徑是R)內任意一點P到各邊距離之和 h1+h2+h3+h4+h5+h6+h7+h8=
8Rcos22.5°
8Rcos22.5°

正n邊形(半徑是R)內任意一點P到各邊距離之和  h1+h2+…+hn=
nRcos
180°
n
nRcos
180°
n

查看答案和解析>>

科目:初中數(shù)學 來源:2012屆福建省福安市九年級中考模擬考試數(shù)學試卷(帶解析) 題型:解答題

△ABC是一塊等邊三角形的廢鐵片,利用其剪裁一個正方形DEFG,使正方形的一條邊DE落在BC上,頂點F、G分別落在AC、AB上.
(1) 證明:△BDG≌△CEF;
(2) 設△ABC的邊長為2,請你幫小聰求出正方形的邊長.(結果精確到十分位)
(3) 小穎想:不求正方形的邊長我也能畫出正方形.具體作法是:如圖3
①在AB邊上任取一點G′,如圖作正方形G′D′E′F′;
②連接BF′并延長交AC于F;
③作FE∥F′E′交BC于E,F(xiàn)G∥F′G′交AB于G,GD∥G′D′交BC于D,則四邊形DEFG即為所求.你認為小穎的作法正確嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012學年福建省福安市九年級中考模擬考試數(shù)學試卷(解析版) 題型:解答題

△ABC是一塊等邊三角形的廢鐵片,利用其剪裁一個正方形DEFG,使正方形的一條邊DE落在BC上,頂點F、G分別落在AC、AB上.

(1) 證明:△BDG≌△CEF;

(2) 設△ABC的邊長為2,請你幫小聰求出正方形的邊長.(結果精確到十分位)

(3) 小穎想:不求正方形的邊長我也能畫出正方形.具體作法是:如圖3

 ①在AB邊上任取一點G′,如圖作正方形G′D′E′F′;

 ②連接BF′并延長交AC于F;

 ③作FE∥F′E′交BC于E,F(xiàn)G∥F′G′交AB于G,GD∥G′D′交BC于D,則四邊形DEFG即為所求.你認為小穎的作法正確嗎?請說明理由.

 

查看答案和解析>>

同步練習冊答案