已知拋物線yax2bxcx軸交于A、B兩點,與y軸交于點C,其中點Bx軸的正半軸上,點Cy軸的正半軸上,線段OB、OC的長(OB<OC)是方程x2-10x+16=0的兩個根,且拋物線的對稱軸是直線x=-2.
(1)求A、B、C三點的坐標(biāo);
(2)求此拋物線的表達式;
(3)連接AC、BC,若點E是線段AB上的一個動點(與點A、點B不重合),過點EEFACBC于點F,連接CE,設(shè)AE的長為m,△CEF的面積為S,求Sm之間的函數(shù)關(guān)系式,并寫出自變量m的取值范圍;
(4)在(3)的基礎(chǔ)上試說明S是否存在最大值,若存在,請求出S的最大值,并求出此時點E的坐標(biāo),判斷此時△BCE的形狀;若不存在,請說明理由.
(1)A(-6,0)B(2,0)C(0,8)
(2) (3),
(4)存在

試題分析:(1)解方程, 
∵點 B x軸的正半軸上, 點Cy軸的正半軸上, 且
∴點B的坐標(biāo)為(2,0),點C的坐標(biāo)為(0,8)
又∵拋物線的對稱軸是直線
∴由拋物線的對稱性可得點A的坐標(biāo)為(-6,0)
(2)∵點C(0,8)在拋物線的圖象上
c=8,將A(-6,0)、B(2,0)代入表達式,得
 解得   
∴所求拋物線的表達式為
(3)依題意,,則,
,,∴
EFAC ∴△BEF∽△BAC
 即
EF
過點FFGAB,垂足為G,則
 ∴FG·


自變量m的取值范圍是
(4)∵  且,
∴當(dāng)時,S有最大值,  
,∴點E的坐標(biāo)為(-2,0)
∴△BCE為等腰三角形. 
點評:此類題目難度都不小,學(xué)生應(yīng)該多嘗試做此類練習(xí)題,一般來講,都有一定規(guī)律在里面,學(xué)生可以多做,以求舉一反三
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,雜技團進行雜技表演,演員從蹺蹺板右端A處彈跳到人梯頂端椅子B處,其身體(看成一點)的路線是拋物線y=-x2+3x+1的一部分,
(1)求演員彈跳離地面的最大高度;
 (2)已知人梯高BC=3.4米,在一次表演中,人梯到起跳點A的水平距離是4米,問這表是
是否成功?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

對于的圖象下列敘述正確的是(  )
A.頂點坐標(biāo)為(-3,2)B.對稱軸為直線=3
C.當(dāng)=3時,有最大值2D.當(dāng)≥3時增大而減小

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線與x軸交A,B兩點(A點在B點左側(cè)),直線與拋物線交于A,C兩點,其中C點的橫坐標(biāo)為2.

(1)求A,B兩點的坐標(biāo)及直線AC的函數(shù)表達式;
(2)P是線段AC上的一個動點,過P點作軸的平行線交拋物線于E點,求線段PE長度的最大值;
(3)點G拋物線上的動點,在x軸上是否存在點F,使A,C,F(xiàn),G這樣的四個點為頂點的四邊形是平行四邊形?如果存在,求出所有滿足條件的F點坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

將二次函數(shù)的圖象向右平移1個單位,再向上平移2個單位后,所得圖象的函數(shù)表達式是       _。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)的圖象以A(,)為頂點,且過B(,
(1)求該函數(shù)的關(guān)系式;
(2)求該函數(shù)圖象與坐標(biāo)軸的交點坐標(biāo);
(3)將該函數(shù)圖象向右平移,當(dāng)圖象經(jīng)過原點時,A、B兩點隨圖象移至點,
的面積。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,點A的坐標(biāo)為(-2,0),點B的坐標(biāo)為(8,0),以AB為直徑作⊙O′,交軸的負(fù)半軸于點C,則點C的坐標(biāo)為       ,若二次函數(shù)的圖像經(jīng)過點A,C,B.已知點P是該拋物線上的動點,當(dāng)∠APB是銳角時,點P的橫坐標(biāo)的取值范圍是           

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

閱讀以下材料:
對于三個數(shù),用表示這三個數(shù)的平均數(shù),用表示這三個數(shù)中最小的數(shù).例如:
;;
解決下列問題:
(1)填空:       ;
(2)①如果,求;
②根據(jù)①,你發(fā)現(xiàn)了結(jié)論:
“如果,那么        (填的大小關(guān)系)”.
③運用②的結(jié)論,填空:
,則      
(3)填空:的最大值為        

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,點C、D是以線段AB為公共弦的兩條圓弧的中點,AB=4,點E、F分別是線段CD,AB上的動點,設(shè)AF=x,AE2-FE2=y,則能表示y與x的函數(shù)關(guān)系的圖象是( )

查看答案和解析>>

同步練習(xí)冊答案