【題目】計算下列各式,然后解答后面的問題:

1)(+1)(1)=   ;(+)()=   ;(+)()=   ;

2)觀察上面的規(guī)律,計算下列式子的值:   ,      ,猜想:   

根據(jù)上面規(guī)律計算:(+1

3)拓展應用,與試比較的大。

【答案】111;1;(21,2,;2018;(3

【解析】

1)直接利用二次根式的性質(zhì)計算得出答案;

2)根據(jù)分母有理化計算得出答案,然后進行猜想,并利用所得規(guī)律化簡求值;

3)根據(jù)所得規(guī)律變形:,,通過比較,利用分數(shù)的性質(zhì)得出答案.

解:(1)(+1)(1)=1;(+)()=1;(+)()=1

故答案為:1,11;

2,

,

故猜想:,

,

=(1+++…+)(+1),

=(1)(+1),

20191,

2018;

故答案為:,,,,2018

3,

,

,

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AB=AC=AD,CAD=60°,分別連接BC、BD,作AE平分∠BACBD于點E,若BE=4,ED=8,則DF=_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一輛汽車的背面,有一種特殊形狀的刮雨器,忽略刮雨器的寬度可抽象為一條折線,如圖所示,量得連桿長為,雨刮桿長為,.若啟動一次刮雨器,雨刮桿正好掃到水平線的位置,如圖所示.

求雨刮桿旋轉(zhuǎn)的最大角度及、兩點之間的距離;

求雨刮桿掃過的最大面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖,AD是△ABC的角平分線,DE、DF分別是△ABD和△ACD的高。求證:AD垂直平分EF。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】晚飯后,小聰和小軍在社區(qū)廣場散步,小聰問小軍:你有多高?小軍一時語塞.小聰思考片刻,提議用廣場照明燈下的影長及地磚長來測量小軍的身高.于是,兩人在燈下沿直線NQ移動,如圖,當小聰正好站在廣場的A(N5塊地磚長)時,其影長AD恰好為1塊地磚長;當小軍正好站在廣場的B(N9塊地磚長)時,其影長BF恰好為2塊地磚長.已知廣場地面由邊長為0.8米的正方形地磚鋪成,小聰?shù)纳砀?/span>AC1.6米,MNNQ,ACNQBENQ.請你根據(jù)以上信息,求出小軍身高BE的長(結(jié)果精確到0.01).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,RtABC,BAC=90°,AB=6,AC=8,P是斜邊BC上一動點,PEAB于點E,PFAC于點F,EFAP相交于點O,OF的最小值為 ( )

A. 4.8 B. 1.2

C. 3.6 D. 2.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,反比例函數(shù)y1=的圖象與一次函數(shù)y2=的圖象交于點A,B,點B的橫坐標實數(shù)4,點P(1,m)在反比例函數(shù)y1=的圖象上.

(1)求反比例函數(shù)的表達式;

(2)觀察圖象回答:當x為何范圍時,y1>y2;

(3)求PAB的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中,∠B30°,點DBC邊上,點EAC邊上,ADBD,DECE,若△ADE為等腰三角形,則∠C的度數(shù)為_____°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)a、b、c為常數(shù)且a≠0)中的xy的部分對應值如下表:

x

3

2

1

0

1

2

3

4

5

y

12

5

0

3

4

3

0

5

12

給出了結(jié)論:

1)二次函數(shù)有最小值,最小值為﹣3;

2)當時,y0

3)二次函數(shù)的圖象與x軸有兩個交點,且它們分別在y軸兩側(cè).

則其中正確結(jié)論的個數(shù)是

A. 3 B. 2 C. 1 D. 0

查看答案和解析>>

同步練習冊答案