解:(1)去分母得:3(x+2)=6-2(x-5),
去括號(hào)得:3x+6=6-2x+10,
移項(xiàng)合并得:5x=10,
解得:x=2;
(2)方程變形得:
-
=1.6,
去分母得:2(y-3)-5(10y+40)=16,
去括號(hào)得:2y-6-50y-200=16,
移項(xiàng)合并得:-48y=222,
解得:y=-
;
(3)去括號(hào)得:
x-2-8=1,
解得:x=55;
(4)方程變形得:
-
=
+3,
去分母得:2(40x-15)-5(50x-8)=120-100x+30,
去括號(hào)得:80x-30-250x+40=150-100x,
移項(xiàng)合并得:-70x=140,
解得:x=-2.
分析:(1)方程兩邊都乘以6去分母后,去括號(hào),移項(xiàng)合并,將x系數(shù)化為1即可求出解;
(2)方程左邊第二項(xiàng)分子分母同時(shí)乘以10變形后,兩邊都乘以10去分母后,去括號(hào),移項(xiàng)合并,將x系數(shù)化為1即可求出解;
(3)利用去括號(hào)法則去括號(hào)后,將x系數(shù)化為1即可求出解;
(4)方程左邊兩項(xiàng)分子分母同時(shí)乘以10變形,右邊第一項(xiàng)分子分母同時(shí)乘以10變形,兩邊都乘以10去分母后,去括號(hào),移項(xiàng)合并,將x系數(shù)化為1即可求出解.
點(diǎn)評(píng):此題考查了解一元一次方程,其步驟為:去分母,去括號(hào),移項(xiàng)合并,將x系數(shù)化為1,求出解.