如圖,AB是⊙O的直徑,經(jīng)過圓上點D的直線CD恰∠ADC=∠B。
(1)求證:直線CD是⊙O的的切線;
(2)過點A作直線AB的垂線交BD的延長線于點E,且AB=,BD=2,求線段AE的長。
解:(1)證明:連接OD,
∵OB=OD,∴∠ODB=∠B。
又∵∠ADC=∠B,∴∠ODB=∠ADC。
∵AB是⊙O的直徑,∴∠ADB=900。
∴∠ODC=∠ADC +∠ADO= ∠ODB+∠ADO= ∠ADB=900。
又 ∵OD是⊙O的半徑,∴直線CD是⊙O的的切線。
BC=OC﹣OB=30﹣20=10(千米)。
(2)在Rt△ABD中,∵AB=,BD=2,∴根據(jù)勾股定理得AD=1。
∵AE⊥AB,∴∠EAB=900!唷螮AB=∠ADB =900。
又∵∠B=∠B,∴△ABD∽△EBA!,即。∴。
【解析】(1)連接OD,只要證明∠ODC=∠ADC +∠ADO= ∠ODB+∠ADO= ∠ADB=900即可。
(2)根據(jù)勾股定理求得AD=1,則由△ABD∽△EBA可列比例式求解。
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:初中數(shù)學(xué)解題思路與方法 題型:047
已知如圖,AB是半圓直經(jīng),△ACD內(nèi)接于半⊙O,CE⊥AB于E,延長AD交EC的延長線于F,求證:AC·CD=AD·FC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:單選題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com