如圖,二次函數(shù)y=x2+bx+c的圖象交x軸于A、D兩點,并經(jīng)過B點,已知A點坐標是(2,0),B點的坐標是(8,6).
(1)求二次函數(shù)的解析式.
(2)求函數(shù)圖象的頂點坐標及D點的坐標.
(3)該二次函數(shù)的對稱軸交x軸于C點.連接BC,并延長BC交拋物線于E點,連接BD,DE,求△BDE的面積.
(4)拋物線上有一個動點P,與A,D兩點構(gòu)成△ADP,是否存在SADP=SBCD?若存在,請求出P點的坐標;若不存在.請說明理由.
(1)二次函數(shù)解析式為:y=x2﹣4x+6;
(2)函數(shù)圖象的頂點坐標為(4,﹣2),點D的坐標為(6,0);
(3)△BDE的面積為7.5.
(4)存在,P1(4+,),P2(4﹣),P3(3,﹣),P4(5,﹣).

試題分析:(1)利用待定系數(shù)法求出b,c即可求出二次函數(shù)解析式;
(2)把二次函數(shù)式轉(zhuǎn)化可直接求出頂點坐標,由A對稱關系可求出點D的坐標;
(3)由待定系數(shù)法可求出BC所在的直線解析式,與拋物線組成方程求出點E的坐標,利用△BDE的面積=△CDB的面積+△CDE的面積求出△BDE的面積;
(4)設點P到x軸的距離為h,由SADP=SBCD求出h的值,根據(jù)h的正,負值求出點P的橫坐標即可求出點P的坐標.
試題解析:(1)∵二次函數(shù)y=x2+bx+c的圖象過A(2,0),B(8,6)
,解得
∴二次函數(shù)解析式為:y=x2﹣4x+6;
(2)由y=x2﹣4x+6,得y=(x﹣4)2﹣2,
∴函數(shù)圖象的頂點坐標為(4,﹣2),
∵點A,D是y=x2+bx+c與x軸的兩個交點,
又∵點A(2,0),對稱軸為x=4,
∴點D的坐標為(6,0);
(3)∵二次函數(shù)的對稱軸交x軸于C點.
∴C點的坐標為(4,0)
∵B(8,6),
設BC所在的直線解析式為y=kx+b,
解得
∴BC所在的直線解析式為y=x﹣6,
∵E點是y=x﹣6與y=x2﹣4x+6的交點,
x﹣6=x2﹣4x+6
解得x1=3,x2=8(舍去),
當x=3時,y=﹣3,
∴E(3,﹣),
∴△BDE的面積=△CDB的面積+△CDE的面積=×2×6+×2×=7.5.
(4)存在,
設點P到x軸的距離為h,
∵SBCD=×2×6=6,SADP=×4×h=2h,
∵SADP=SBCD
∴2h=6×,解得h=,
當P在x軸上方時,
=x2﹣4x+6,解得x1=4+,x2=4﹣,
當當P在x軸下方時,
=x2﹣4x+6,解得x1=3,x2=5,
∴P1(4+,),P2(4﹣,),P3(3,﹣),P4(5,﹣).
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,拋物線經(jīng)過點A(1,0),B(5,0),C(0,)三點,設點E(x,y)是拋物線上一動點,且在x軸下方,四邊形OEBF是以OB為對角線的平行四邊形.

(1)求拋物線的解析式;
(2)當點E(x,y)運動時,試求平行四邊形OEBF的面積S與x之間的函數(shù)關系式,并求出面積S的最大值?
(3)是否存在這樣的點E,使平行四邊形OEBF為正方形?若存在,求E點,F(xiàn)點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

某商家計劃從廠家采購空調(diào)和冰箱兩種產(chǎn)品共20臺,空調(diào)的采購單價y1(元/臺)與采購數(shù)量x1(臺)滿足y1=﹣20x1+1500(0<x1≤20,x1為整數(shù));冰箱的采購單價y2(元/臺)與采購數(shù)量x2(臺)滿足y2=﹣10x2+1300(0<x2≤20,x2為整數(shù)).
(1)經(jīng)商家與廠家協(xié)商,采購空調(diào)的數(shù)量不少于冰箱數(shù)量的,且空調(diào)采購單價不低于1200元,問該商家共有幾種進貨方案?
(2)該商家分別以1760元/臺和1700元/臺的銷售單價售出空調(diào)和冰箱,且全部售完.在(1)的條件下,問采購空調(diào)多少臺時總利潤最大?并求最大利潤.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖1,矩形OABC頂點B的坐標為(8,3),定點D的坐標為(12,0),動點P從點O出發(fā),以每秒2個單位長度的速度沿x軸的正方向勻速運動,動點Q從點D出發(fā),以每秒1個單位長度的速度沿x軸的負方向勻速運動,PQ兩點同時運動,相遇時停止.在運動過程中,以PQ為斜邊在x軸上方作等腰直角三角形PQR.設運動時間為t秒.
(1)當t=    時,△PQR的邊QR經(jīng)過點B;
(2)設△PQR和矩形OABC重疊部分的面積為S,求S關于t的函數(shù)關系式;
(3)如圖2,過定點E(5,0)作EF⊥BC,垂足為F,當△PQR的頂點R落在矩形OABC的內(nèi)部時,過點R作x軸、y軸的平行線,分別交EF、BC于點M、N,若∠MAN=45°,求t的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,拋物線y=ax2+bx+4與x軸的一個交點為A(-2,0),與y軸的交點為C,對稱軸是x=3,對稱軸與x軸交于點B.
(1)求拋物線的函數(shù)表達式;
(2)經(jīng)過B,C的直線l平移后與拋物線交于點M,與x軸交于點N,當以B,C,M,N為頂點的四邊形是平行四邊形時,求出點M的坐標;
(3)若點D在x軸上,在拋物線上是否存在點P,使得△PBD≌△PBC?若存在,直接寫出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

對于二次函數(shù)y=x2-3x+2和一次函數(shù)y=-2x+4,把函數(shù)y=t(x2-3x+2)+(1-t)(-2x+4)(t為常數(shù))稱為這兩個函數(shù)的“衍生二次函數(shù)”.已知不論t取何常數(shù),這個函數(shù)永遠經(jīng)過某些定點,則這個函數(shù)必經(jīng)過的定點坐標為         

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知二次函數(shù)y=-2x2+4x+6.
(1)求出該函數(shù)圖象的頂點坐標,對稱軸,圖象與x軸、y軸的交點坐標,并在下面的坐標系中畫出這個函數(shù)的大致圖象;
(2)利用函數(shù)圖象寫出:當y>0時x的取值范圍?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,矩形ABCD中,AB=3,BC=5,點P是BC邊上的一個動點(點P不與點B,C重合),現(xiàn)將△PCD沿直線PD折疊,使點C落下點C′處;作∠BPC′的平分線交AB于點E.設BP=x,BE=y,那么y關于x的函數(shù)圖象大致應為( 。
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

不論m取任何實數(shù),拋物線y=a(x+m)2+m(a≠0)的頂點都(  )
A.在y=x直線上B.在直線y=-x上
C.在x軸上D.在y軸上

查看答案和解析>>

同步練習冊答案