【題目】甲、乙兩車(chē)分別從相距420km的A、B兩地相向而行,乙車(chē)比甲車(chē)先出發(fā)1小時(shí),兩車(chē)分別以各自的速度勻速行駛,途經(jīng)C地(A、B、C三地在同一條直線(xiàn)上).甲車(chē)到達(dá)C地后因有事立即按原路原速返回A地,乙車(chē)從B地直達(dá)A地,甲、乙兩車(chē)距各自出發(fā)地的路程y(千米)與甲車(chē)行駛所用的時(shí)間x(小時(shí))的關(guān)系如圖所示,結(jié)合圖象信息回答下列問(wèn)題:
(1)甲車(chē)的速度是 千米/時(shí),乙車(chē)的速度是 千米/時(shí);
(2)求甲車(chē)距它出發(fā)地的路程y(千米)與它行駛所用的時(shí)間x(小時(shí))之間的函數(shù)關(guān)系式;
(3)甲車(chē)出發(fā)多長(zhǎng)時(shí)間后兩車(chē)相距90千米?請(qǐng)你直接寫(xiě)出答案.
【答案】(1)105,60;(2)y=;(3)時(shí),時(shí)或時(shí).
【解析】
(1)根據(jù)題意和函數(shù)圖象中的數(shù)據(jù)可以得到甲乙兩車(chē)的速度;
(2)根據(jù)題意和函數(shù)圖象中的數(shù)據(jù)可以求得甲車(chē)距它出發(fā)地的路程y(千米)與它行駛所用的時(shí)間x(小時(shí))之間的函數(shù)關(guān)系式;
(3)根據(jù)題意可知甲乙兩車(chē)相距90千米分兩種情況,從而可以解答本題.
(1)由圖可得,
甲車(chē)的速度為:(210×2)÷4=420÷4=105千米/時(shí),
乙車(chē)的速度為:60千米/時(shí),
故答案為:105,60;
(2)由圖可知,點(diǎn)M的坐標(biāo)為(2,210),
當(dāng)0≤x≤2時(shí),設(shè)y=k1x,
∵M(2,210)在該函數(shù)圖象上,
2k1=210,
解得,k1=105,
∴y=105x(0≤x≤2);
當(dāng)2<x≤4時(shí),設(shè)y=k2x+b,
∵M(2,210)和點(diǎn)N(4,0)在該函數(shù)圖象上,
∴,得,
∴y=﹣105x+420(2<x≤4),
綜上所述:甲車(chē)距它出發(fā)地的路程y與它出發(fā)的時(shí)間x的函數(shù)關(guān)系式為:y=;
(3)設(shè)甲車(chē)出發(fā)a小時(shí)時(shí)兩車(chē)相距90千米,
當(dāng)甲從A地到C地時(shí),
105a+60(a+1)+90=420,
解得,a=,
當(dāng)甲從C地返回A地時(shí),
(210﹣60×3)+(105﹣60)×(a﹣2)=90,
解得,a=,
當(dāng)甲到達(dá)A地后,
420﹣60(a+1)=90,
解得,a=,
答:甲車(chē)出發(fā)時(shí),時(shí)或時(shí),兩車(chē)相距90千米.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠BAC=120°,將△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)一定角度(小于360°)得到△B′AC′.
(1)若點(diǎn)B′落在線(xiàn)段AC上,在圖中畫(huà)出△B′AC′,并直接寫(xiě)出當(dāng)AC=4時(shí),CC′的值;
(2)若∠ACB=20°,旋轉(zhuǎn)后,B′C′⊥AC,請(qǐng)直接寫(xiě)出旋轉(zhuǎn)角的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A(,0),AB⊥軸,且AB=10,點(diǎn)C(0,b),,b滿(mǎn)足.點(diǎn)P(t,0)是線(xiàn)段AO上一點(diǎn)(不包含A,O)
(1)當(dāng)t=5時(shí),求PB:PC的值;
(2)當(dāng)PC+PB最小時(shí),求t的值;
(3)請(qǐng)根據(jù)以上的啟發(fā),解決如下問(wèn)題:正數(shù)m,n滿(mǎn)足m+n=10,且正數(shù)=,則正數(shù)的最小值=________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在底面是正三角形的三棱柱中,邊AB,A'B'垂直于投影面P且AB,A'B'上的高所在截面平行于投影面,若已知CD的投影長(zhǎng)為2 cm,CC'的投影長(zhǎng)為6 cm.
(1)畫(huà)出三棱柱在投影面P上的正投影;
(2)求出三棱柱的表面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了促進(jìn)學(xué)生多樣化發(fā)展,某校組織開(kāi)展了社團(tuán)活動(dòng),分別設(shè)置了體育類(lèi)、藝術(shù)類(lèi)、文學(xué)類(lèi)及其它類(lèi)社團(tuán)(要求人人參與社團(tuán),每人只能選擇一項(xiàng)).為了解學(xué)生喜愛(ài)哪種社團(tuán)活動(dòng),學(xué)校做了一次抽樣調(diào)查.根據(jù)收集到的數(shù)據(jù),繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中提供的信息,完成下列問(wèn)題:
(1)此次共調(diào)查了多少人?
(2)求文學(xué)社團(tuán)在扇形統(tǒng)計(jì)圖中所占圓心角的度數(shù);
(3)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(4)若該校有1500名學(xué)生,請(qǐng)估計(jì)喜歡體育類(lèi)社團(tuán)的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)C在⊙O上,CD⊥AB于D,且∠COD=60°,E為弧BC上一動(dòng)點(diǎn)(不與點(diǎn)B、C重合),過(guò)E分別作于EF⊥AB于F,EG⊥OC于G.現(xiàn)給出以下四個(gè)命題:
①∠GEF=60°;②CD=GF;③△GEF一定為等腰三角形;④E在弧BC上運(yùn)動(dòng)時(shí),存在某個(gè)時(shí)刻使得△GEF為等邊三角形.
其中正確的命題是_____.(寫(xiě)出所有正確命題的序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,AD為斜邊BC上的中線(xiàn),AE∥BC,CE∥AD,EC的垂直平分線(xiàn)FG交AC點(diǎn)G,連接DG,若∠ADG=24°,則∠B的度數(shù)為_____度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,平面直角坐標(biāo)系中,B、C兩點(diǎn)的坐標(biāo)分別為B(0,3)和C(0,﹣),點(diǎn)A在x軸正半軸上,且滿(mǎn)足∠BAO=30°.
(1)過(guò)點(diǎn)C作CE⊥AB于點(diǎn)E,交AO于點(diǎn)F,點(diǎn)G為線(xiàn)段OC上一動(dòng)點(diǎn),連接GF,將△OFG沿FG翻折使點(diǎn)O落在平面內(nèi)的點(diǎn)O′處,連接O′C,求線(xiàn)段OF的長(zhǎng)以及線(xiàn)段O′C的最小值;
(2)如圖2,點(diǎn)D的坐標(biāo)為D(﹣1,0),將△BDC繞點(diǎn)B順時(shí)針旋轉(zhuǎn),使得BC⊥AB于點(diǎn)B,將旋轉(zhuǎn)后的△BDC沿直線(xiàn)AB平移,平移中的△BDC記為△B′D′C′,設(shè)直線(xiàn)B′C′與x軸交于點(diǎn)M,N為平面內(nèi)任意一點(diǎn),當(dāng)以B′、D′、M、N為頂點(diǎn)的四邊形是菱形時(shí),求點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)y=x2+bx+c與x軸交于A(﹣1,0),B(3,0)兩點(diǎn),與軸交于點(diǎn).
(1)求該拋物線(xiàn)的解析式;
(2)P是y軸正半軸上一點(diǎn),且△PAB是以AB為腰的等腰三角形,試求點(diǎn)P的坐標(biāo);
(3)作直線(xiàn)BC,若點(diǎn)Q是直線(xiàn)BC下方拋物線(xiàn)上的一動(dòng)點(diǎn),三角形QBC面積是否有最大值,若有,請(qǐng)求出此時(shí)Q點(diǎn)的坐標(biāo);若沒(méi)有,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com