已知:直角梯形OABC的四個頂點是O(0,0),A(,1),B(s,t),C(,0),拋物線y=x2+mx-m的頂點P是直角梯形OABC內(nèi)部或邊上的一個動點,m為常數(shù).
(1)求s與t的值,并在直角坐標系中畫出直角梯形OABC;
(2)當拋物線y=x2+mx-m與直角梯形OABC的邊AB相交時,求m的取值范圍.

【答案】分析:(1)AB∥x軸,BC∥y軸∴B點的橫坐標與C的橫坐標相同,縱坐標與A點的縱坐標相同.就可以求出s,t的值.
(2)拋物線y=x2+mx-m與直角梯形OABC的邊AB相交,拋物線的開口向上,拋物線與AB相交,因而拋物線的頂點一定在AB上或在AB的下邊,即頂點的縱坐標小于B點的縱坐標1.用m表示出頂點的縱坐標,小于或等于1,就可以得到關于m的不等式,從而解出m的范圍.
解答:解:
(1)如圖,在坐標系中標出O,A,C三點,連接OA,OC,
∵∠AOC≠90°,
∴∠ABC=90°,
故BC⊥OC,BC⊥AB,
∴B(,1).((1分))
即s=,t=1.直角梯形如圖所畫.(2分)
(大致說清理由即可)

(2)由題意,y=x2+mx-m與y=1(線段AB)相交,
得,(3分)
∴1=x2+mx-m,
由(x-1)(x+1+m)=0,
得x1=1,x2=-m-1.
∵x1=1<,不合題意,舍去.(4分)
∴拋物線y=x2+mx-m與AB邊只能相交于(x2,1),
≤-m-1≤,
.①(5分)
又∵頂點P()是直角梯形OABC的內(nèi)部和其邊上的一個動點,
,即-7≤m≤0. ②(6分)

(或者拋物線y=x2+mx-m頂點的縱坐標最大值是1)
∴點P一定在線段AB的下方.(7分)
又∵點P在x軸的上方,
,m(m+4)≤0,
或者.(8分)
∴-4≤m≤0. (9分) ③(9分)
又∵點P在直線y=x的下方,
,(10分)
即m(3m+8)≥0.
或者,(*(8分)處評分后,此處不重復評分)
∴m≤-(11分),或m≥0 ④
由①,②,③,④,得-4≤m≤-.(12分)
說明:解答過程,全部不等式漏寫等號的扣(1分),個別漏寫的酌情處理.
點評:結合函數(shù)的圖象理解函數(shù)的解析式的特點,利用數(shù)形結合的方法可以比較容易理解.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

已知,在Rt△OAB中,∠OAB=90°,∠BOA=30°,AB=2.若以O為坐標原點,OA所在直精英家教網(wǎng)線為x軸,建立如圖所示的平面直角坐標系,點B在第一象限內(nèi).將Rt△OAB沿OB折疊后,點A落在第一象限內(nèi)的點C處.
(1)求點C的坐標;
(2)若拋物線y=ax2+bx(a≠0)經(jīng)過C、A兩點,求此拋物線的解析式;
(3)若上述拋物線的對稱軸與OB交于點D,點P為線段DB上一動點,過P作y軸的平行線,交拋物線于點M,問:是否存在這樣的點P,使得四邊形CDPM為等腰梯形?若存在,請求出此時點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,已知在直角梯形OABC中,AB∥OC,BC⊥x軸于點C,A(1,1)、B(3,1).動點P從O點出發(fā),沿x軸正方向以每秒1個單位長度的速度移動.過P點作PQ垂直于直線OA,垂足為Q.設P點移動的時間為t秒(0<t<4),△OPQ與直角梯形OABC重疊部分的面積為S.
(1)求經(jīng)過O、A、B三點的拋物線解析式;
(2)求S與t的函數(shù)關系式;
(3)在運動過程中,是否存在某一時刻t,使得以C、P、Q為頂點的三角形與△OAB相似?若存在,求出t的值;若不存在,請說明理由.
(4)將△OPQ繞著點P順時針旋轉90°,是否存在t,使得△OPQ的頂點O或Q在拋物線上?若存在,直接寫出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖所示,已知在直角梯形OABC中,AB∥OC,BC⊥x軸于點C,A(1,1)、B(3,1).動點P從O點出發(fā),沿x軸正方向以每秒1個單位長度的速度移動.過P點作PQ垂直于直線OA,垂足為Q.設P點移動的時間為t秒(0<t<4),△OPQ與直角梯形OABC重疊部分的面積為S.
(1)求經(jīng)過O、A、B三點的拋物線解析式;
(2)求S與t的函數(shù)關系式;
(3)在運動過程中,是否存在某一時刻t,使得以C、P、Q為頂點的三角形與△OAB相似?若存在,求出t的值;若不存在,請說明理由.
(4)將△OPQ繞著點P順時針旋轉90°,是否存在t,使得△OPQ的頂點O或Q在拋物線上?若存在,直接寫出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,已知在直角梯形OABC中,ABOC,BCx軸于點C,A(1,1)、B(3,1).動點PO點出發(fā),沿x軸正方向以每秒1個單位長度的速度移動.過P點作PQ垂直于直線OA,垂足為Q.設P點移動的時間為t秒(0<t<4),△OPQ與直角梯形OABC重疊部分的面積為S

(1)求經(jīng)過O、AB三點的拋物線解析式;

(2)求St的函數(shù)關系式;

(3)在運動過程中,是否存在某一時刻t,使得以C、PQ為頂點的三角形與△OAB相似?若存在,求出t的值;若不存在,請說明理由.

(4)將△OPQ繞著點P順時針旋轉90°,是否存在t,使得△OPQ的頂點OQ在拋物線上?若存在,直接寫出t的值;若不存在,請說明理由.

 


查看答案和解析>>

科目:初中數(shù)學 來源:2011年江蘇省無錫市積余實驗學校中考數(shù)學二模試卷(解析版) 題型:解答題

如圖所示,已知在直角梯形OABC中,AB∥OC,BC⊥x軸于點C,A(1,1)、B(3,1).動點P從O點出發(fā),沿x軸正方向以每秒1個單位長度的速度移動.過P點作PQ垂直于直線OA,垂足為Q.設P點移動的時間為t秒(0<t<4),△OPQ與直角梯形OABC重疊部分的面積為S.
(1)求經(jīng)過O、A、B三點的拋物線解析式;
(2)求S與t的函數(shù)關系式;
(3)在運動過程中,是否存在某一時刻t,使得以C、P、Q為頂點的三角形與△OAB相似?若存在,求出t的值;若不存在,請說明理由.
(4)將△OPQ繞著點P順時針旋轉90°,是否存在t,使得△OPQ的頂點O或Q在拋物線上?若存在,直接寫出t的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案