【題目】甲、乙兩地相距720km,一列快車(chē)和一列慢車(chē)都從甲地駛往乙地,慢車(chē)先行駛1h后,快車(chē)才開(kāi)始行駛,已知快車(chē)的速度是120km/h,以快車(chē)開(kāi)始行駛計(jì)時(shí),設(shè)時(shí)間為x(h),兩車(chē)之間的距離為y(km),圖中的折線是y與x的函數(shù)關(guān)系的部分圖象.根據(jù)圖象解決下列問(wèn)題:
(1)慢車(chē)的速度是 km/h,點(diǎn)B的坐標(biāo)是 .
(2)求線段AB所表示的y與x之間的函數(shù)關(guān)系式.
【答案】(1)、80,(6,160);(2)、y=40x﹣80(2≤x≤6)
【解析】
試題分析:(1)、根據(jù)題意得出慢車(chē)1小時(shí)行駛了80千米,從而得出速度;然后根據(jù)追及問(wèn)題得出點(diǎn)B的坐標(biāo);(2)、根據(jù)點(diǎn)A和點(diǎn)B的坐標(biāo)得出線段AB的函數(shù)解析式.
試題解析:(1)、80,(6,160)
(2)、設(shè)線段AB的表達(dá)式為y=kx+b ∵A(2,0),B(6,160)
∴ 2k+b=0, ① 6k+b=160, ② 解得:k=40,b=-80 ∴ y=40x﹣80(2≤x≤6)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,△ABC中,AB=AC,∠BAC=120°,AC的垂直平分線EF交AC于點(diǎn)E,交BC于點(diǎn)F.求證:BF=2CF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,AB=AC,∠C=75°, 則∠A的度數(shù)是( )
A.30°B.50°C.75°D.150°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y=x2+2x+6的圖像與x軸相交于A、B兩點(diǎn),與y軸交于點(diǎn)C,頂點(diǎn)為點(diǎn)D,該二次函數(shù)圖像的對(duì)稱軸與直線BC相交于點(diǎn)E,與x軸交于點(diǎn)F;
(1)求直線BC的解析式;
(2)試判斷△BFE與△DCE是否相似?并說(shuō)明理由.
(3)在坐標(biāo)軸上是否存在這樣的點(diǎn)P,使得以點(diǎn)P、B、C為頂點(diǎn)的三角形與△DCE相似?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】根據(jù)下列證明過(guò)程填空:
已知:如 圖,AD⊥BC于點(diǎn)D,EF⊥BC于點(diǎn)F,交AB于點(diǎn)G,交CA的延長(zhǎng)線于點(diǎn)E,∠1=∠2.
求證:AD平分∠BAC,填寫(xiě)證明中的空白.
證明:
∵AD⊥BC,EF⊥BC (已知),
∴EF∥AD ( ),
∴_______ _ = ________ ( 兩直線平行,內(nèi)錯(cuò)角相等 ),
________ =∠CAD ( ____________ ).
∵________ (已知),
∴________ ,即AD平分∠BAC ( ).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若A(﹣4,y1),B(﹣3,y2),C(1,y3)為二次函數(shù)y=x2+4x﹣5的圖象上的三點(diǎn),則y1,y2,y3的大小關(guān)系是( )
A. y1<y2<y3 B. y2<y1<y3 C. y3<y1<y2 D. y1<y3<y2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在數(shù)軸上與﹣2所對(duì)應(yīng)的點(diǎn)相距4個(gè)單位長(zhǎng)度的點(diǎn)表示的數(shù)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的方程 x2﹣2x+k=0.
(1)若原方程有實(shí)數(shù)根,求k的取值范圍?
(2)選取一個(gè)你喜歡的非零整數(shù)值作為k的值,使原方程有實(shí)數(shù)根,并解方程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,小敏做了一個(gè)角平分儀ABCD,其中AB=AD,BC=DC.將儀器上的點(diǎn)A與∠PRQ的頂點(diǎn)R重合,調(diào)整AB和AD,使它們分別落在角的兩邊上,過(guò)點(diǎn)A,C畫(huà)一條射線AE,AE就是∠PRQ的平分線.此角平分儀的畫(huà)圖原理是:根據(jù)儀器結(jié)構(gòu),可得△ABC≌△ADC,這樣就有∠QAE=∠PAE.則說(shuō)明這兩個(gè)三角形全等的依據(jù)是( )
A.SAS
B.ASA
C.AAS
D.SSS
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com