【題目】新冠肺炎使得湖北的物資緊缺,為支援疫區(qū),某村捐贈(zèng)蔬菜30噸,水果13噸,現(xiàn)計(jì)劃租用甲、乙兩種貨車共10輛將這批水果全部運(yùn)往港口,已知一輛甲種貨車可裝蔬菜和水果共5噸,且一輛甲種貨車可裝的蔬菜重量(單位:噸)是其可裝的水果重量的4倍,一輛乙種貨車可裝蔬菜水果各2噸;

1)一輛甲種貨車可裝載蔬菜、水果各多少噸?

2)該村安排甲、乙兩種貨車時(shí)有幾種方案?請(qǐng)你幫助設(shè)計(jì)出來(lái);

3)若甲種貨車每輛要付運(yùn)輸費(fèi)2000元,乙種貨車每輛要付運(yùn)輸費(fèi)1500元,則該村應(yīng)選擇哪種方案?使運(yùn)費(fèi)最少?最少運(yùn)費(fèi)是多少元?

【答案】14;12)三種方案:甲5輛,乙5輛;甲6輛,乙4輛;甲7輛,乙3輛 (3)方案1;17500

【解析】

1)設(shè)一輛甲種貨車可裝載蔬菜x噸,水果y噸,根據(jù)“一輛甲種貨車可裝蔬菜和水果共5噸,且一輛甲種貨車可裝的蔬菜重量是其可裝的水果重量的4倍”,即可得出關(guān)于x,y的二元一次方程組,解之即可得出結(jié)論;

2)設(shè)安排m輛甲種貨車,則安排(10-m)輛乙種貨車,根據(jù)這10輛車可一次將30噸蔬菜和13噸水果運(yùn)完,即可得出關(guān)于m的一元一次不等式組,解之即可得出m的取值范圍,再結(jié)合m為整數(shù),即可得出各運(yùn)貨方案;

3)根據(jù)總運(yùn)費(fèi)=單輛車的運(yùn)費(fèi)×所用該種車型的輛數(shù),即可分別求出三種運(yùn)貨方案所需總運(yùn)費(fèi),比較后即可得出結(jié)論.

解:(1)設(shè)一輛甲種貨車可裝載蔬菜x噸,水果y噸, 依題意,得:

,

解得:

答:一輛甲種貨車可裝載蔬菜4噸,水果1噸.

2)設(shè)安排m輛甲種貨車,則安排(10-m)輛乙種貨車, 依題意,得:

解得:5m7

m為整數(shù),

m=5,6,7

∴共有三種方案,

方案1:安排5輛甲種貨車,5輛乙種貨車;

方案2:安排6輛甲種貨車,4輛乙種貨車;

方案3:安排7輛甲種貨車,3輛乙種貨車.

3)方案1所需費(fèi)用2000×5+1500×5=17500(元);

方案2所需費(fèi)用2000×6+1500×4=18000(元);

方案3所需費(fèi)用2000×7+1500×3=18500(元).

175001800018500

∴該果農(nóng)應(yīng)選方案1,使運(yùn)費(fèi)最少,最少運(yùn)費(fèi)是17500元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),直線y=﹣x+b與坐標(biāo)軸交于C,D兩點(diǎn),直線AB與坐標(biāo)軸交于A,B兩點(diǎn),線段OA,OC的長(zhǎng)是方程x2﹣3x+2=0的兩個(gè)根(OA>OC).

(1)求點(diǎn)A,C的坐標(biāo);

(2)直線AB與直線CD交于點(diǎn)E,若點(diǎn)E是線段AB的中點(diǎn),反比例函數(shù)y=(k≠0)的圖象的一個(gè)分支經(jīng)過(guò)點(diǎn)E,求k的值;

(3)在(2)的條件下,點(diǎn)M在直線CD上,坐標(biāo)平面內(nèi)是否存在點(diǎn)N,使以點(diǎn)B,E,M,N為頂點(diǎn)的四邊形是菱形?若存在,請(qǐng)直接寫出滿足條件的點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在“五·一車展期間,某汽車經(jīng)銷商推出四種型號(hào)的轎車共1000輛進(jìn)行展銷,型號(hào)轎車銷售的成交率(售出數(shù)量展銷數(shù)量)為50%,圖1是各型號(hào)參展轎車的百分比,圖2是已售出的各型號(hào)轎車的數(shù)量,(兩幅統(tǒng)計(jì)圖尚不完整)

1)參加展銷的型號(hào)轎車有多少輛?

2)請(qǐng)你將圖2的統(tǒng)計(jì)圖補(bǔ)充完整.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn),的坐標(biāo)分別為,,現(xiàn)同時(shí)將點(diǎn)分別向上平移個(gè)單位,再向右平移個(gè)單位,分別得到點(diǎn),的對(duì)應(yīng)點(diǎn),,連接,,.(三角形可用符號(hào)表示,面積用符號(hào)表示)

1)直接寫出點(diǎn),的坐標(biāo).

2)在軸上是否存在點(diǎn),連接,,使,若存在,請(qǐng)求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

3)點(diǎn)在直線上運(yùn)動(dòng),連接,.

①若在線段之間時(shí)(不與重合),求的取值范圍;

②若在直線上運(yùn)動(dòng),請(qǐng)直接寫出,的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在梯形ABCD中,ABCD,D=90°,AD=CD=2,點(diǎn)E在邊AD上(不與點(diǎn)A、D重合),∠CEB=45°,EB與對(duì)角線AC相交于點(diǎn)F,設(shè)DE=x.

(1)用含x的代數(shù)式表示線段CF的長(zhǎng);

(2)如果把CAE的周長(zhǎng)記作CCAE,BAF的周長(zhǎng)記作CBAF,設(shè)=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出它的定義域;

(3)當(dāng)∠ABE的正切值是時(shí),求AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知.點(diǎn)C在點(diǎn)的右側(cè), ,平分么,平分所在的直線交于點(diǎn),點(diǎn)之間。

(1)如圖1,點(diǎn)在點(diǎn)A的左側(cè),若 ,的度數(shù)?

(2)如圖2,點(diǎn)在點(diǎn)A的右側(cè),若,直接寫出的大小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在學(xué)校組織的學(xué)習(xí)強(qiáng)國(guó)閱讀知識(shí)競(jìng)賽中,有901班和902班兩個(gè)班參加比賽且人數(shù)相同,成績(jī)分為AB,CD四個(gè)等級(jí),其中相應(yīng)等級(jí)的得分依次記為100分,90分,80分和70分.年級(jí)組長(zhǎng)李老師將901班和902班的成績(jī)進(jìn)行整理并繪制成如下的統(tǒng)計(jì)圖:

平均數(shù)(分)

中位數(shù)(分)

眾數(shù)(分)

B級(jí)及以上人數(shù)

901

87.6

90

18

902

87.6

100

1)在本次競(jìng)賽中,902C級(jí)及以上的人數(shù)有多少?

2)請(qǐng)你將表格補(bǔ)充完整:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一座拱橋的截面輪廓為拋物線型(如圖1),拱高6,跨度20,相鄰兩支柱間的距離均為5.

1)將拋物線放在所給的直角坐標(biāo)系中(如圖2所示),其表達(dá)式是的形式. 請(qǐng)根據(jù)所給的數(shù)據(jù)求出的值.

2)求支柱MN的長(zhǎng)度.

3)拱橋下地平面是雙向行車道(正中間DE是一條寬2米的隔離帶),其中的一條行車道能否并排行駛寬2米、高3米的三輛汽車(汽車間的間隔忽略不計(jì))?請(qǐng)說(shuō)說(shuō)你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】周末,小李8時(shí)騎自行車從家里出發(fā),到野外郊游,16時(shí)回到家里.他離家的距離s(千米)與時(shí)間t(時(shí))之間的函數(shù)關(guān)系可以用圖中的折線表示.現(xiàn)有如下信息:

1)小李到達(dá)離家最遠(yuǎn)的地方的時(shí)間是14時(shí);

2)小李第一次休息時(shí)間是10時(shí);

311時(shí)到12時(shí),小李騎了5千米;

4)返回時(shí),小李的平均車速是10千米/時(shí).

其中,正確的信息有___________________(填番號(hào)).

查看答案和解析>>

同步練習(xí)冊(cè)答案