【題目】如圖,在正方形中,邊的中點(diǎn),、分別為、邊上的點(diǎn),若,,,則的長(zhǎng)為(

A.2B.3C.D.

【答案】B

【解析】

由在正方形ABCD中,∠GEF=90°,易證得AGE∽△BEF,又由EAB的中點(diǎn),AG=1,BF=2,根據(jù)相似三角形的對(duì)應(yīng)邊成比例,易求得AEBE的長(zhǎng),然后由勾股定理求得答案.

∵四邊形ABCD是正方形,

∴∠A=B=90°,

∴∠AGE+AEG=90°,

∵∠GEF=90°,

∴∠AEG+BEF=90°

∴∠AGE=BEF,

∴△AGE∽△BEF

EAB的中點(diǎn),

AE=BE,

AG=1,BF=2,

,

解得:BE=AE=

RtAEG中,

RtBEF中,,

∴在RtGEF中,.

故選B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:如果三角形有一邊上的中線(xiàn)長(zhǎng)恰好等于這邊的長(zhǎng),那么稱(chēng)這個(gè)三角形為和美三角形,這條邊稱(chēng)為和美邊,這條中線(xiàn)稱(chēng)為和美中線(xiàn)

理解:(1)請(qǐng)你在圖①中畫(huà)一個(gè)以AB為和美邊的和美三角形,使第三個(gè)頂點(diǎn)C落在格點(diǎn)上;

     

2)如圖②,在RtABC中,∠C=90°,.求證:ABC和美三角形

運(yùn)用:(3)已知,等腰ABC和美三角形AB=AC=20,求底邊BC的長(zhǎng)(畫(huà)圖解答).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)B的坐標(biāo)為(4,3),點(diǎn)AC在坐標(biāo)軸上,點(diǎn)PBC邊上,直線(xiàn)11y=2x+3,直線(xiàn)12y=2x3

1)分別求直線(xiàn)11x軸、直線(xiàn)12AB的交點(diǎn)DE的坐標(biāo);

2)已知點(diǎn)M在矩形ABCD內(nèi)部,且是直線(xiàn)12上的點(diǎn),若△APM是等腰直角三角形,求點(diǎn)M的坐標(biāo);

3)我們把直線(xiàn)11和直線(xiàn)12上的點(diǎn)所組成的圖形稱(chēng)為圖形F.已知矩形ANPQ的頂點(diǎn)N在圖形F上,且在AP的上方,Q是坐標(biāo)平面內(nèi)的點(diǎn),設(shè)N點(diǎn)的橫坐標(biāo)為x,請(qǐng)直接寫(xiě)出x的取值范圍(不必說(shuō)明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線(xiàn)x軸,y軸分別交于點(diǎn)A,點(diǎn)B,拋物線(xiàn)經(jīng)過(guò)A,B與點(diǎn).

1)求拋物線(xiàn)的解析式;

2)點(diǎn)P是直線(xiàn)AB上方的拋物線(xiàn)上一動(dòng)點(diǎn)(不與點(diǎn)A,B重合),過(guò)點(diǎn)Px軸的垂線(xiàn),垂足為D,交線(xiàn)段AB于點(diǎn)E.設(shè)點(diǎn)P的橫坐標(biāo)為m.

①求的面積y關(guān)于m的函數(shù)關(guān)系式,當(dāng)m為何值時(shí),y有最大值,最大值是多少?

②若點(diǎn)E是垂線(xiàn)段PD的三等分點(diǎn),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小王是新星廠(chǎng)的一名工人,請(qǐng)你閱讀下列信息:

信息一:工人工作時(shí)間:每天上午800—1200,下午1400—1800,每月工作25天;

信息二:小王生產(chǎn)甲、乙兩種產(chǎn)品的件數(shù)與所用時(shí)間的關(guān)系見(jiàn)下表:

生產(chǎn)甲種產(chǎn)品數(shù)()

生產(chǎn)乙種產(chǎn)品數(shù)()

所用時(shí)間(分鐘)

10

10

350

30

20

850

信息三:按件計(jì)酬,每生產(chǎn)一件甲種產(chǎn)品得1.50元,每生產(chǎn)一件乙種產(chǎn)品得2.80元;

信息四:該廠(chǎng)工人每月收入由底薪和計(jì)酬工資兩部分構(gòu)成,小王每月的底薪為1900元.請(qǐng)根據(jù)以上信息,解答下列問(wèn)題:

(1)小王每生產(chǎn)一件甲種產(chǎn)品和一件乙種產(chǎn)品分別需要多少分鐘;

(2)20181月工廠(chǎng)要求小王生產(chǎn)甲種產(chǎn)品的件數(shù)不少于60件,則小王該月收入最多是多少元?此時(shí)小王生產(chǎn)的甲、乙兩種產(chǎn)品分別是多少件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,是由一個(gè)等邊ABE和一個(gè)矩形BCDE拼成的一個(gè)圖形,其點(diǎn)B,CD的坐標(biāo)分別為(1,2),(1,1),(3,1).

(1)直接寫(xiě)出E點(diǎn)和A點(diǎn)的坐標(biāo);

(2)試以點(diǎn)B為位似中心,作出位似圖形A1B1C1D1E1,使所作的圖形與原圖形的位似比為31;

(3)直接寫(xiě)出圖形A1B1C1D1E1的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:四邊形ABCD中,,,AD=CD,對(duì)角線(xiàn)AC,BD相交于點(diǎn)O,且BD平分∠ABC,過(guò)點(diǎn)A,垂足為H.

(1)求證:;

(2)判斷線(xiàn)段BH,DH,BC之間的數(shù)量關(guān)系;并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)的圖象交x軸于A(-1, 0),B(4, 0)兩點(diǎn),交y軸于點(diǎn)C.動(dòng)點(diǎn)M從點(diǎn)A出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿AB方向運(yùn)動(dòng),過(guò)點(diǎn)MMNx軸交直線(xiàn)BC于點(diǎn)N,交拋物線(xiàn)于點(diǎn)D,連接AC.設(shè)運(yùn)動(dòng)的時(shí)間為t秒.

(1)求二次函數(shù)的表達(dá)式;

(2)連接BD,當(dāng)時(shí),求△DNB的面積;

(3)在直線(xiàn)MN上存在一點(diǎn)P,當(dāng)△PBC是以∠BPC為直角的等腰直角三角形時(shí),直接寫(xiě)出此時(shí)點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖拋物線(xiàn)y=ax2+3ax+ca0)與y軸交于點(diǎn)C,與x軸交于A,B兩點(diǎn),點(diǎn)A在點(diǎn)B左側(cè).點(diǎn)B的坐標(biāo)為(1,0),OC=3OB,


1)求拋物線(xiàn)的解析式;
2)若點(diǎn)D是線(xiàn)段AC下方拋物線(xiàn)上的動(dòng)點(diǎn),求四邊形ABCD面積的最大值;
3)若點(diǎn)Ex軸上,點(diǎn)P在拋物線(xiàn)上.是否存在以A,C,E,P為頂點(diǎn)且以AC為一邊的平行四邊形?若存在,寫(xiě)出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案