【題目】蕪湖長江大橋是中國跨度最大的公路和鐵路兩用橋梁,大橋采用低塔斜拉橋橋型(如甲圖),圖乙是從圖甲引申出的平面圖,假設你站在橋上測得拉索AB與水平橋面的夾角是30°,拉索CD與水平橋面的夾角是60°,兩拉索頂端的距離BC為2米,兩拉索底端距離AD為20米,請求出立柱BH的長.(結果精確到0.1米,≈1.732)

【答案】立柱BH的長約為16.3米.

【解析】

試題分析:設DH=x米,由三角函數(shù)得出CH=x,即可得BH=BC+CH=2+x,再求得AH=BH=2+3x,由AH=AD+DH得出方程2+3x=20+x,,解方程求出x,即可得出結果.

試題解析:設DH=x米,

∵∠CDH=60°H=90°,

CH=DHsin60°=x,

BH=BC+CH=2+x,

∵∠A=30°,

AH=BH=2+3x,

AH=AD+DH,

2+3x=20+x,

解得:x=10

BH=2+(10)=10116.3(米).

答:立柱BH的長約為16.3米.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某校四個綠化小組一天植樹的棵數(shù)如下:10,x,10,8.已知這組數(shù)據(jù)的眾數(shù)與平均數(shù)相等,則這組數(shù)據(jù)的中位數(shù)是(  )

A. 8 B. 9 C. 10 D. 12

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校舉行“漢字聽寫”比賽,每位學生聽寫漢字39個.比賽結束后隨機抽查部分學生聽寫結果,圖1,圖2是根據(jù)抽查結果繪制的統(tǒng)計圖的一部分.

組別

聽寫正確的個數(shù)x

人數(shù)

A

0≤x<8

10

B

8≤x<16

15

C

16≤x<24

25

D

24≤x<32

m

E

32≤x<40

n


根據(jù)以上信息解決下列問題:
(1)本次共隨機抽查了多少名學生,求出m,n的值并補全圖2的條形統(tǒng)計圖;
(2)求出圖1中∠α的度數(shù);
(3)該校共有3000名學生,如果聽寫正確的個數(shù)少于24個定為不合格,請你估計這所學校本次比賽聽寫不合格的學生人數(shù)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個多邊形的每個內(nèi)角都等于144°,則這個多邊形的邊數(shù)是(
A.8
B.9
C.10
D.11

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AB是O的直徑,點P為圓上一點,點C為AB延長線上一點,PA=PC,C=30°.

(1)求證:CP是O的切線.

(2)若O的直徑為8,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(9分)如圖,小東在教學樓距地面9米高的窗口C處,測得正前方旗桿頂部A點的仰角為37°,旗桿底部B點的俯角為45°.升旗時,國旗上端懸掛在距地面2.25米處. 若國旗隨國歌聲冉冉升起,并在國歌播放45秒結束時到達旗桿頂端,則國旗應以多少米/秒的速度勻速上升?

(參考數(shù)據(jù):sian37°=0.60,cos37°=0.80,tan37°=0.75)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解不等式組 ,并求出它的整數(shù)解的和.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀材料: 解分式不等式
解:根據(jù)實數(shù)的除法法則,同號兩數(shù)相除得正數(shù),異號兩數(shù)相除得負數(shù),因此,原不等式可轉化為:
,②
解不等式組①,得:x>3.
解不等式組②,得:x<﹣2.
所以原分式不等式的解集是x>3或x<﹣2.
請仿照上述方法解分式不等式: <0.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(10分)如圖,O是ABC的外接圓,AB是O的直徑,AB=8.

(1)利用尺規(guī),作CAB的平分線,交O于點D;(保留作圖痕跡,不寫作法)

(2)在(1)的條件下,連接CD,OD,若AC=CD,求B的度數(shù);

(3)在(2)的條件下,OD交BC于點E.求出由線段ED,BE,所圍成區(qū)域的面積.(其中表示劣弧,結果保留π和根號)

查看答案和解析>>

同步練習冊答案