【題目】如圖,在平行四邊形ABCD中,E是BC的中點(diǎn),且∠AEC=∠DCE,則下列結(jié)論不正確的是( 。
A. BF=DFB. S△AFD=2S△EFBC. 四邊形AECD是等腰梯形D. ∠AEB=∠ADC
【答案】B
【解析】
根據(jù)已知條件即可推出△BEF∽△DAF,推出A項(xiàng)為正確,已知條件可以推出四邊形AECD為等腰梯形,推出C項(xiàng)正確,結(jié)合平行四邊形的性質(zhì),可以推出D項(xiàng)正確,所以B項(xiàng)是錯(cuò)誤的.
解:∵平行四邊形ABCD中,
∴△BEF∽△DAF,
∵E是BC的中點(diǎn),
∴BF:FD=BE:AD,
∴BF=DF,
故A項(xiàng)正確;
∵∠AEC=∠DCE,
∴四邊形AECD為等腰梯形,
故C項(xiàng)正確;
∵△BEF∽△DAF,BF=DF,
∴S△AFD=4S△EFB,
故B項(xiàng)不正確;
∵∠AEB+∠AEC=180°
∠ADC+∠C=180°
∠AEC=∠C
∴∠AEB=∠ADC
因此D項(xiàng)正確.
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC 中,∠BAC=90°,AB=AC,點(diǎn)D是BC上一動(dòng)點(diǎn),連接AD,過點(diǎn)A作AE⊥AD,并且始終保持AE=AD,連接CE.
(1)求證:△ABD ≌△ACE ;
(2)若AF平分∠DAE交BC于F,探究線段BD,DF,F(xiàn)C之間的數(shù)量關(guān)系,并證明;
(3)在(2)的條件下,若BD=3,CF=4,求AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從甲地到乙地有兩條公路,一條是全長600km的普通公路,另一條是全長480km的高速公路,某客車在高速公路上行駛的平均速度比在普通公路上快45/ ,由高速公路從甲地到乙地所需的時(shí)間是由普通公路從甲地到乙地所需時(shí)間的一半,求該客車由高速公路從甲地到乙地所需的時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明和小剛玩“石頭、剪刀、布”的游戲,每一局游戲雙方各自隨機(jī)做出“石頭”、“剪刀”、“布”三種手勢(shì)的一種,規(guī)定“石頭”勝“剪刀”,“剪刀”勝“布”,“布”勝“石頭”,相同的手勢(shì)是和局.
(1)用樹形圖或列表法計(jì)算在一局游戲中兩人獲勝的概率各是多少?
(2)如果兩人約定:只要誰率先勝兩局,就成了游戲的贏家.用樹形圖或列表法求只進(jìn)行兩局游戲便能確定贏家的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,鈍角△ABC中,AB=AC,BC=2,O是邊AB上一點(diǎn),以O為圓心,OB為半徑作⊙O,交邊AB于點(diǎn)D,交邊BC于點(diǎn)E,過E作⊙O的切線交邊AC于點(diǎn)F.
(1)求證:EF⊥AC.
(2)連結(jié)DF,若∠ABC=30°,且DF∥BC,求⊙O的半徑長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是一塊綠化帶,將陰影部分修建為花圃,已知AB=13,AC=5,BC=12,陰影部分是△ABC的內(nèi)切圓,一只自由飛翔的小鳥將隨機(jī)落在這塊綠化帶上,則小鳥落在花圃上的概率為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A、B、C、D、E是⊙O上五點(diǎn),⊙O的直徑BE=2,∠BCD=120°,A為的中點(diǎn),延長BA到點(diǎn)P,使BA=AP,連接PE.
(1)求線段BD的長;
(2)求證:直線PE是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2﹣2mx+3m與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C(0,﹣3)
(1)求該拋物線的解析式;
(2)點(diǎn)D為該拋物線上的一點(diǎn)、且在第二象限內(nèi),連接AC,若∠DAB=∠ACO,求點(diǎn)D的坐標(biāo);
(3)若點(diǎn)E為線段OC上一動(dòng)點(diǎn),試求2AE+EC的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com