【題目】如圖,在平面直角坐標(biāo)系中,A、B均在邊長為1的正方形網(wǎng)格格點(diǎn)上.
(1)求線段AB所在直線的函數(shù)解析式,并寫出當(dāng)0≤y≤2時,自變量x的取值范圍;
(2)將線段AB繞點(diǎn)B逆時針旋轉(zhuǎn)90°,得到線段BC,請?jiān)诖痤}卡指定位置畫出線段BC.若直線BC的函數(shù)解析式為y=kx+b,則y隨x的增大而(填“增大”或“減小”).
【答案】
(1)
解:設(shè)直線AB的函數(shù) 解析式為y=kx+b(k、b為常數(shù)且k≠0)
依題意,得A(1,0),B(0,2)
∴
解得
∴直線AB的函數(shù)解析式為y=﹣2x+2
當(dāng)0≤y≤2時,自變量x的取值范圍是0≤x≤1
(2)
解:線段BC即為所求.
故答案為:增大
【解析】(1)根據(jù)一次函數(shù)圖象知A(1,0),B(0,2),然后將其代入一次函數(shù)的解析式,利用待定系數(shù)法求該函數(shù)的解析式;(2)根據(jù)旋轉(zhuǎn)的性質(zhì),在答題卡中畫出線段BC,然后根據(jù)直線BC的單調(diào)性填空.
【考點(diǎn)精析】關(guān)于本題考查的確定一次函數(shù)的表達(dá)式,需要了解確定一個一次函數(shù),需要確定一次函數(shù)定義式y(tǒng)=kx+b(k不等于0)中的常數(shù)k和b.解這類問題的一般方法是待定系數(shù)法才能得出正確答案.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,1925年數(shù)學(xué)家莫倫發(fā)現(xiàn)的世界上第一個完美長方形,它恰能被分割成10個大小不同的正方形.若標(biāo)注①、②的正方形邊長分別為5和6,請你直接寫出以下數(shù)據(jù):
(1)第6個正方形的邊長= ;
(2)第8個正方形的邊長= ;
(3)整個長方形的面積= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,E、F分別是邊AB、CD上的點(diǎn),AE=CF,連接EF,BF,EF與對角線AC交于O點(diǎn),且BE=BF,∠BEF=2∠BAC。
(1)求證:OE=OF;
(2)若BC=,求AB的長。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知,在Rt ΔABC中,∠ABC=900, AB=BC=2.
(1)用尺規(guī)作∠A的平分線AD.
(2)角平分線AD交BC于點(diǎn)D,求BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請閱讀求絕對值不等式|x|<3和|x|>3的解集的過程:
因?yàn)?/span>|x|<3,從如圖1所示的數(shù)軸上看:大于-3而小于3的數(shù)的絕對值是小于3的,所以|x|<3的解集是-3<x<3;
因?yàn)?/span>|x|>3,從如圖2所示的數(shù)軸上看:小大于-3的數(shù)和大于3的數(shù)的絕對值是大于3的,所以|x|>3的解集是x<-3或x>3.
解答下面的問題:
(1)不等式|x|<a(a>0)的解集為______;不等式|x|>a(a>0)的解集為______.
(2)解不等式|x-5|<3;
(3)解不等式|x-3|>5.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一組數(shù)據(jù)7,2,5,4,2的方差為a,若再增加一個數(shù)據(jù)4,這6個數(shù)據(jù)的方差為b,則a與b的大小關(guān)系是( 。
A. a>b B. a=b C. a<b D. 以上都有可能
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方體的長為15厘米,寬為10厘米,高為20厘米,點(diǎn)B到點(diǎn)C的距離是5厘米。一只小蟲在長方體表面從A爬到B的最短路程是__________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,Rt△ABC的直角邊AC在x軸上,∠ACB=90°,AC=1,反比例函數(shù)(k>0)的圖象經(jīng)過BC邊的中點(diǎn)D(3,1).
(1)求這個反比例函數(shù)的表達(dá)式;
(2)若△ABC與△EFG成中心對稱,且△EFG的邊FG在y軸的正半軸上,點(diǎn)E在這個函數(shù)的圖象上.
①求OF的長;
②連接AF,BE,證明四邊形ABEF是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了鍛煉學(xué)生身體素質(zhì),訓(xùn)練定向越野技能,某校在一公園內(nèi)舉行定向越野挑戰(zhàn)賽.路線圖如圖所示,點(diǎn)為矩形邊的中點(diǎn),在矩形的四個頂點(diǎn)處都有定位儀,可監(jiān)測運(yùn)動員的越野進(jìn)程,其中一位運(yùn)動員從點(diǎn)出發(fā),沿著的路線勻速行進(jìn),到達(dá)點(diǎn).設(shè)運(yùn)動員的運(yùn)動時間為,到監(jiān)測點(diǎn)的距離為.現(xiàn)有與的函數(shù)關(guān)系的圖象大致如圖所示,則這一信息的來源是( ).
A. 監(jiān)測點(diǎn) B. 監(jiān)測點(diǎn) C. 監(jiān)測點(diǎn) D. 監(jiān)測點(diǎn)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com