如圖,在平面直角坐標(biāo)系xOy中,函數(shù)y=-x的圖象l是第二、四象限的角平分線.實(shí)驗(yàn)與探究:由圖觀察易知A(-1,3)關(guān)于直線l的對(duì)稱點(diǎn)A′的坐標(biāo)為(-3,1),請(qǐng)你寫出點(diǎn)B(5,3)關(guān)于直線l的對(duì)稱點(diǎn)B′的坐標(biāo):
(-3,-5)
(-3,-5)

歸納與發(fā)現(xiàn):
結(jié)合圖形,自己選點(diǎn)再試一試,通過觀察點(diǎn)的坐標(biāo),你會(huì)發(fā)現(xiàn):坐標(biāo)平面內(nèi)任一點(diǎn)P(m,n)關(guān)于第二、四象限的角平分線l的對(duì)稱點(diǎn)P′的坐標(biāo)為
(-n,-m)
(-n,-m)
;
運(yùn)用與拓廣:
已知兩點(diǎn)C(6,0),D(2,4),試在直線l上確定一點(diǎn),使這點(diǎn)到C,D兩點(diǎn)的距離之和最小,在圖中畫出這點(diǎn)的位置,保留作圖痕跡,并求出這點(diǎn)的坐標(biāo).
分析:直接根據(jù)A(-1,3)關(guān)于直線l的對(duì)稱點(diǎn)A′的坐標(biāo)為(-3,1)即可得出點(diǎn)B(5,3)關(guān)于直線l的對(duì)稱點(diǎn)B′的坐標(biāo);
歸納與發(fā)現(xiàn):根據(jù)AB關(guān)于直線y=-x對(duì)稱的點(diǎn)的坐標(biāo)特點(diǎn)即可得出點(diǎn)P(m,n)關(guān)于第二、四象限的角平分線l的對(duì)稱點(diǎn)P′的坐標(biāo);
運(yùn)用與拓廣:作點(diǎn)C關(guān)于直線 l 的對(duì)稱點(diǎn)C',連接C'D,交 l于點(diǎn)E,連接CE,根據(jù)兩點(diǎn)之間線段最短可確定出E點(diǎn),利用待定系數(shù)法求出直線C'D的解析式,故可得出E點(diǎn)坐標(biāo).
解答:解:∵A(-1,3)關(guān)于直線l的對(duì)稱點(diǎn)A′的坐標(biāo)為(-3,1),
∴B'(-3,-5);
∵A(-1,3),B(5,3)關(guān)于直線l的對(duì)稱點(diǎn)A′的坐標(biāo)為(-3,1),B'(-3,-5);
∴P'(-n,-m).
運(yùn)用與拓廣:
如圖,作點(diǎn)C關(guān)于直線 l 的對(duì)稱點(diǎn)C',連接C'D,交 l于點(diǎn)E,連接CE.
由作圖可知,EC=EC',
∴EC+ED=EC'+ED=C'D.
∴點(diǎn)E為所求.   
∵C(6,0),
∴C'(0,-6).
設(shè)直線C'D的解析式為y=kx-6.
∵D(2,4),
∴k=5.
∴直線C'D的解析式為y=5x-6.
y=5x-6 
y=-x
x=1 
y=-1 .

∴E(1,-1).
點(diǎn)評(píng):本題考查的是一次函數(shù)綜合題,根據(jù)題意得出關(guān)于直線y=-x對(duì)稱的點(diǎn)的坐標(biāo)特點(diǎn)是解答此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個(gè)點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動(dòng),路徑為O→A→B→C,到達(dá)點(diǎn)C時(shí)停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時(shí),求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時(shí),請(qǐng)寫出點(diǎn)P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊(cè)答案