精英家教網 > 初中數學 > 題目詳情
某校八年級學生小麗、小強和小紅到某超市參加了社會實踐活動,在活動中他們參與了某種水果的銷售工作.已知該水果的進價為8元/千克,下面是他們在活動結束后的對話.
小麗:如果以10元/千克的價格銷售,那么每天可售出300千克.
小強:如果每千克的利潤為3元,那么每天可售出250千克.
小紅:如果以13元/千克的價格銷售,那么每天可獲取利潤750元.
【利潤=(銷售價-進價)×銷售量】
(1)請根據他們的對話填寫下表:
銷售單價x(元/kg)101113
銷售量y(kg)__________________
(2)請你根據表格中的信息判斷每天的銷售量y(千克)與銷售單價x(元)之間存在怎樣的函數關系.并求y(千克)與x(元)(x>0)的函數關系式;
(3)設該超市銷售這種水果每天獲取的利潤為W元,求W與x的函數關系式.當銷售單價為何值時,每天可獲得的利潤最大?最大利潤是多少元?
【答案】分析:(1)根據題意得到每漲一元就少50千克,則以13元/千克的價格銷售,那么每天售出150千克;
(2)先判斷y是x的一次函數.利用待定系數法求解析式,設y=kx+b,把x=10,y=300;x=11,y=250代入即可得到y(千克)與x(元)(x>0)的函數關系式;
(2)根據每天獲取的利潤=每千克的利潤×每天的銷售量得到W=(x-8)y=(x-8)(-50x+800),然后配成頂點式得y=-50(x-12)2+800,最后根據二次函數的最值問題進行回答即可.
解答:解:(1)∵以11元/千克的價格銷售,可售出250千克,
∴每漲一元就少50千克,
∴以13元/千克的價格銷售,那么每天售出150千克.
故答案為300,250,150;
(2)y是x的一次函數.
設y=kx+b,
∵x=10,y=300;x=11,y=250,
,解得,
∴y=-50x+800,
經檢驗:x=13,y=150也適合上述關系式,
∴y=-50x+800.
(3)W=(x-8)y
=(x-8)(-50x+800)
=-50x2+1200x-6400
=-50(x-12)2+800,
∵a=-50<0,
∴當x=12時,W的最大值為800,
即當銷售單價為12元時,每天可獲得的利潤最大,最大利潤是800元.
點評:本題考查了二次函數的應用:先得到二次函數的頂點式y=a(x-h)2+k,當a<0,x=h時,y有最大值k;當a<0,x=h時,y有最小值k.也考查了利用待定系數法求函數的解析式.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

某校八年級學生小麗、小強和小紅到某超市參加了社會實踐活動,在活動中他們參與了某種水果的銷售工作,已知該水果的進價為8元/千克,下面是他們在活動結束后的對話.
小麗:如果以10元/千克的價格銷售,那么每天可售出300千克.
小強:如果以13元/千克的價格銷售,那么每天可獲取利潤750元.
小紅:通過調查驗證,我發(fā)現每天的銷售量y(千克)與銷售單價x(元)之間存在一次函數關系.
(1)求y(千克)與x(元)(x>0)的函數關系式;
(2)設該超市銷售這種水果每天獲取的利潤為W元,那么當銷售單價為何值時,每天可獲得的利潤最大?最大利潤是多少元?【利潤=銷售量×(銷售單價-進價)】

查看答案和解析>>

科目:初中數學 來源: 題型:

某校八年級學生小麗,小強和小紅到某超市參加了社會實踐活動,在活動中他們參與了某種水果的銷售工作,已知該水果的進價為8元/千克,下面是他們在活動結束后的對話.
小麗:如果以10元/千克的價格銷售,那么每天可售出300千克.
小強:如果以13元/千克的價格銷售,那么每天可獲取利潤750元.
小紅:通過調查驗證,我發(fā)現每天的銷售量y(千克)與銷售單價x(元)之間存在一次函數關系.
(1)求y(千克)與x(元)(x>0)的函數關系式;
(2)當銷售單價為何值時,該超市銷售這種水果每天獲得的利潤達600元?[利潤=銷售量×(銷售單價-進價)].
(3)一段時間后,發(fā)現這種水果每天的銷售量均低于225千克,則此時該超市銷售這種水果每天獲取的利潤最大是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

某校八年級學生小麗、小強和小紅到某超市參加了社會實踐活動,在活動中他們參與了某種水果的銷售工作.已知該水果的進價為8元/千克,下面是他們在活動結束后的對話.
小麗:如果以10元/千克的價格銷售,那么每天可售出300千克.
小強:如果每千克的利潤為3元,那么每天可售出250千克.
小紅:如果以13元/千克的價格銷售,那么每天可獲取利潤750元.
【利潤=(銷售價-進價)×銷售量】
(1)請根據他們的對話填寫下表:
銷售單價x(元/kg) 10 11 13
銷售量y(kg)
 
 
 
(2)請你根據表格中的信息判斷每天的銷售量y(千克)與銷售單價x(元)之間存在怎樣的函數關系.并求y(千克)與x(元)(x>0)的函數關系式;
(3)設該超市銷售這種水果每天獲取的利潤為W元,求W與x的函數關系式.當銷售單價為何值時,每天可獲得的利潤最大?最大利潤是多少元?

查看答案和解析>>

科目:初中數學 來源: 題型:

某校八年級學生小麗、小強和小紅到某超市參加了社會實踐活動,在活動中他們參與了某種水果的銷售工作,已知該種水果的進價為8元/千克,下面是他們在活動結束后的對話:
小麗:如果以10元/千克的價格銷售,那么每天可售出300千克.
小強:如果以13元/千克的價格銷售,那么每天可獲取利潤750元.
小紅:通過調查驗證,我發(fā)現每天的銷售量y(千克)與銷售單價x(元)之間存在一次函數關系.
求y(千克)與x(元)(x>0)的函數關系式.

查看答案和解析>>

科目:初中數學 來源:2008年安徽省馬鞍山市成功學校中考數學一模試卷(解析版) 題型:解答題

某校八年級學生小麗、小強和小紅到某超市參加了社會實踐活動,在活動中他們參與了某種水果的銷售工作,已知該水果的進價為8元/千克,下面是他們在活動結束后的對話.
小麗:如果以10元/千克的價格銷售,那么每天可售出300千克.
小強:如果以13元/千克的價格銷售,那么每天可獲取利潤750元.
小紅:通過調查驗證,我發(fā)現每天的銷售量y(千克)與銷售單價x(元)之間存在一次函數關系.
(1)求y(千克)與x(元)(x>0)的函數關系式;
(2)設該超市銷售這種水果每天獲取的利潤為W元,那么當銷售單價為何值時,每天可獲得的利潤最大?最大利潤是多少元?【利潤=銷售量×(銷售單價-進價)】

查看答案和解析>>

同步練習冊答案