【題目】已知:如圖,在中,,以為直徑作分別交于點(diǎn),,連接,過點(diǎn),垂足為,交于點(diǎn)

(1)求證:

(2)若,求線段的長;

(3)在的條件下,求的面積.

【答案】(1)詳見解析;(2);(3)

【解析】

(1)根據(jù)圓周角定理可得∠ADB90°,由等腰三角形三線合一可得∠ABD=∠CBD,又AD、DE是兩角對應(yīng)的弦,所以可證ADDE;(2)先證△CED∽△CAB,再根據(jù)相似三角形的性質(zhì)和已知邊長求得CD;(3)RtABD中由勾股定理求得BD,根據(jù)角相等,可證△BPE∽△BED,利用相似性質(zhì)求得BP,進(jìn)一步求得DP,根據(jù)等高三角形面積比等于底邊的比,可得SBCDSBPEDPBP13:32,,SBDESBCDBEBC4:5,再根據(jù)三角形面積公式即可求解.

(1)證明:的直徑,

,

的中點(diǎn),,

;

(2)∵四邊形內(nèi)接于,

,

,

,

,的中點(diǎn),

;

(3)延長

,

中,,

,

,的直徑,

,

,

,

,

,

,,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)D,E△ABC的邊BC上,AB=AC,AD=AE.

(1)求證:BD=CE;

(2)若AD=BD=DE,求∠BAC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知矩形ABCD沿著直線BD折疊,使點(diǎn)C落在C/處,BC/ADE,AD=8,AB=4DE的長=________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)為了提高學(xué)生的消防意識,舉行了消防知識競賽,所有參賽學(xué)生分別設(shè)有一、二、三等獎和紀(jì)念獎,獲獎情況已繪制成如圖所示的兩幅不完整的統(tǒng)計(jì)圖,根據(jù)圖中所經(jīng)信息解答下列問題:

1)這次知識競賽共有多少名學(xué)生?

2)“二等獎”對應(yīng)的扇形圓心角度數(shù),并將條形統(tǒng)計(jì)圖補(bǔ)充完整;

3)小華參加了此次的知識競賽,請你幫他求出獲得“一等獎或二等獎”的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,,交邊(點(diǎn)不與、重合).、分別平分,若,則的值為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,已知的垂直平分線交于點(diǎn),交于點(diǎn),連接.

1)若,則的度數(shù)是

2)若,的周長是.

①求的長度;

②若點(diǎn)為直線上一點(diǎn),請你直接寫出周長的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】百子回歸圖是由 1,2,3,…,100 無重復(fù)排列而成的正方形數(shù)表,它是一部數(shù)化的澳門簡史,中央四 “19 99 12 20”標(biāo)示澳門回歸日期最后一行中間兩 “23 50”標(biāo)示澳門面積,…,同時它也是十階幻方其每行 10 個數(shù)之和、每列 10 個數(shù)之和每條對角線10 個數(shù)之和均相等,則這個和為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖四邊形ABCD中,∠ABC3CBD,∠ADC3CDB,∠C128°,則∠A的度數(shù)是(  )

A.60°B.76°C.77°D.78°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長一定的正方形ABCD,Q是CD上一動點(diǎn),AQ交BD于點(diǎn)M,過M作MN⊥AQ交BC于N點(diǎn),作NP⊥BD于點(diǎn)P,連接NQ,下列結(jié)論:①AM=MN;

②MP=BD;③BN+DQ=NQ;④為定值。其中一定成立的是_______.

查看答案和解析>>

同步練習(xí)冊答案