已知在△ABC中,AB=3,AC=2,D在邊AB上,∠ACD=∠B,∠BAC的平分線交CD于P、交BC于Q,則=   
【答案】分析:根據(jù)角平分線的定義得∠BAQ=∠CAP,而∠ACD=∠B,根據(jù)相似三角形的判定得到△ABQ∽△ACP,由相似三角形的性質(zhì)得到,把AB=3,AC=2代入即可得到答案.
解答:解:∵AQ平分∠BAC,
∴∠BAQ=∠CAP,
而∠ACD=∠B,
∴△ABQ∽△ACP,
,
又∵AB=3,AC=2,
=
故答案為
點評:本題考查了相似三角形的判定與性質(zhì):如果兩個三角形有兩組角對應(yīng)相等,那么這兩個三角形相似;相似三角形的對應(yīng)邊的比相等.也考查了角平分線的定義.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知在△ABC中,AB=AC=5,BC=8,點G為重心,那么GA=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

22、如圖,已知在△ABC中,∠A=(2x+10)°,∠B=(3x)°,∠ACD是△ABC的一個外角,且∠ACD=(6x-10)°,求∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知在△ABC中,∠BAC=90°,AC=4,BC=4
5
,若點D、E、F分別為AB、BC、AC邊的中點,點P為AB邊上的一個動點(且不與點A、B重合),PQ∥AC,且交BC于點Q,以PQ為一邊在點B的異側(cè)作正方形PQMN,設(shè)正方形PQMN與矩形ADEF的公共部分的面積為S,BP的長為x,試求S與x之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知在△ABC中,∠BAC為直角,AB=AC,D為AC上一點,CE⊥BD于E.若BD平分∠ABC.
求證:CE=
12
BD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知在△ABC中,∠B與∠C的平分線交于點P.
(1)當(dāng)∠A=70°時,求∠BPC的度數(shù);
(2)當(dāng)∠A=112°時,求∠BPC的度數(shù);
(3)當(dāng)∠A=α?xí)r,求∠BPC的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案