【題目】x1,x2是關(guān)于x的一元二次方程x22axa24a20的兩個實數(shù)根,當a為何值時,x12x22有最小值?最小值是多少?

【答案】

【解析】

x1x2是關(guān)于x的一元二次方程x2+2ax+a2+4a-2=0的兩實根,根據(jù)判別式△=2a2-4a2+4a-2)≥0可求得a,可得a的取值范圍.對要求值的式子化簡:x12+x22=x1+x22-2x1x2=2a-22-4,這是一個關(guān)于a的一元二次方程,其對稱軸是a=2,開口方向向上.根據(jù)開口向上的二次函數(shù)的性質(zhì):距對稱軸越近,其函數(shù)值越小.故在a的范圍內(nèi),當a時,x12+x22的值最小;此時x12x2224,即最小值為.

∵方程有兩個實數(shù)根,

Δ(2a)24(a24a2)≥0,

a≤.

又∵x1x2=-2ax1x2a24a2,

x12+x22=(x1+x2)2-2x1x2=2(a-2)2-4.

a≤,

∴當a時,x12x22的值最。

此時x12+x22=2-4=,即最小值為.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】中央電視臺的朗讀者節(jié)目激發(fā)了同學們的讀書熱情,為了引導學生多讀書,讀好書,某校對八年級部分學生的課外閱讀量進行了隨機調(diào)查,整理調(diào)查結(jié)果發(fā)現(xiàn),學生課外閱讀的本書最少的有5本,最多的有8本,并根據(jù)調(diào)查結(jié)果繪制了不完整的圖表,如圖所示:

本數(shù)(本)

頻數(shù)(人數(shù))

頻率

5

a

0.2

6

18

0.36

7

14

b

8

8

0.16

合計

50

c

我們定義頻率=,比如由表中我們可以知道在這次隨機調(diào)查中抽樣人數(shù)為50人課外閱讀量為6本的同學為18人,因此這個人數(shù)對應的頻率就是=0.36.

(1)統(tǒng)計表中的a、b、c的值;

(2)請將頻數(shù)分布表直方圖補充完整;

(3)求所有被調(diào)查學生課外閱讀的平均本數(shù);

(4)若該校八年級共有600名學生,你認為根據(jù)以上調(diào)查結(jié)果可以估算分析該校八年級學生課外閱讀量為7本和8本的總?cè)藬?shù)為多少嗎?請寫出你的計算過程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(本小題滿分10分)

如圖,臺風中心位于點P,并沿東北方向PQ移動,已知臺風移動的速度為30千米/時,受影響區(qū)域的半徑為200千米,B市位于點P的北偏東75°方向上,距離點P 320千米處.

(1) 說明本次臺風會影響B市;

2求這次臺風影響B市的時間.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,P是⊙O外一點,PA,PB分別和⊙O切于AB兩點,C是弧AB上任意一點,過點C作⊙O的切線分別交PA,PB于點D,E.PDE的周長為12,則PA的長為(   )

A. 12 B. 6 C. 8 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,已知∠ABC90o,在AB上取一點E,以BE為直徑的⊙O恰與AC相切于點D,若AE2cm,AD4cm

(1)求⊙O的直徑BE的長;

(2)計算ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將線段AB繞點O順時針旋轉(zhuǎn)90°得到線段A′B′,那么A(﹣2,5)的對應點A′的坐標是________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,AB=16cm,AD=4cm,點P、Q分別從A、B同時出發(fā),點P在邊AB上沿AB方向以2cm/s的速度勻速運動,點Q在邊BC上沿BC方向以1cm/s的速度勻速運動,當其中一點到達終點時,另一點也隨之停止運動.設運動時間為x秒,PBQ的面積為y(cm2).

(1)求y關(guān)于x的函數(shù)關(guān)系式,并寫出x的取值范圍;

(2)求PBQ的面積的最大值.,并指出此時x的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若m,n,p滿足m-n=8,mn+p2+16=0,求m+n+p的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,O的半徑為4,BO外一點,連接OB,且OB=6,過點BO的切線BD,切點為D,延長BOO于點A,過點A作切線BD的垂線,垂足為C

1)求證:AD平分BAC;

2)求AC的長.

查看答案和解析>>

同步練習冊答案