【題目】如圖,等邊三角形ABC的邊長是2,M是高CH所在直線上的一個動點,連接MB,將線段BM繞點B逆時針旋轉60°得到BN,連接MN,則在點M運動過程中,線段MN長度的最小值是_____.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,直線l:y=x+m與x軸、y軸分別交于點A和點B(0,﹣1),拋物線y= x2+bx+c經(jīng)過點B,與直線l的另一個交點為C(4,n).
(1)求n的值和拋物線的解析式;
(2)點D在拋物線上,DE∥y軸交直線l于點E,點F在直線l上,且四邊形DFEG為矩形(如圖2),設點D的橫坐標為t(0<t<4),矩形DFEG的周長為p,求p與t的函數(shù)關系式以及p的最大值;
(3)將△AOB繞平面內(nèi)某點M旋轉90°或180°,得到△A1O1B1,點A、O、B的對應點分別是點A1、O1、B1.若△A1O1B1的兩個頂點恰好落在拋物線上,那么我們就稱這樣的點為“落點”,請直接寫出“落點”的個數(shù)和旋轉180°時點A1的橫坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了解學生假期的課外閱讀情況,某校隨機抽查了八年級學生閱讀課外書的冊數(shù)并作了統(tǒng)計,繪制出如下統(tǒng)計圖,其中條形統(tǒng)計圖因為破損丟失了閱讀5冊書的數(shù)據(jù),根據(jù)以上信息,解答下列問題:
(1)請補全條形統(tǒng)計圖中丟失的數(shù)據(jù)和扇形統(tǒng)計圖;
(2)閱讀課外書冊數(shù)的眾數(shù)為______冊;
(3)根據(jù)隨機抽查的這個結果,請估計該校1200名學生中課外書閱讀7冊書的學生人數(shù)?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在菱形ABCD中,∠A=120°,點E是BC邊的中點,點P是對角線BD上一動點,設PD的長度為x,PE與PC的長度和為y,圖2是y關于x的函數(shù)圖象,其中H是圖象上的最低點,則a+b的值為( 。
A.7B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,對于任意三點A,B,C,給出如下定義:若矩形的任何一條邊均與某條坐標軸平行或重合,且A,B,C三點都在矩形的內(nèi)部或邊界上,則稱該矩形為點A,B,C的外延矩形,點A,B,C的所有外延矩形中,面積最小的矩形稱為點A,B,C的最佳外延矩形.例如,圖①中的矩形A1B1C1D1,A2B2C2D2,A3B3CD3,都是點A,B,C的外延矩形,矩形A3B3CD3是點A,B,C的最佳外延矩形.
(1)如圖②,已知A(﹣1,0),B(3,2),點C在直線y=x﹣1上,設點C的橫坐標為t.
①若t=,則點A,B,C的最佳外延矩形的面積為多少?
②若點A,B,C的最佳外延矩形的面積為9,求t的值.
(2)如圖③,已知點M(4,0),N(0,),P(x,y)是拋物線y=﹣x2+2x+3上一點,求點M,N,P的最佳外延矩形面積的最小值,以及此時點P的橫坐標x的取值范圍;
(3)已知D(1,0).若Q是拋物線y=﹣x2﹣2mx﹣m2+2m+1的圖象在﹣2≤x≤1之間的最高點,點E的坐標為(0,4m),設點D,E,Q的最佳外延矩形的面積為S,當4≤S≤6時,直接寫出m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點O(0,0),A(-5,0),B(2,1),拋物線l:y=-(x-h)2+1(h為常數(shù))與y軸的交點為C.
(1)l經(jīng)過點B,求它的解析式,并寫出此時l的對稱軸及頂點坐標:
(2)設點C的縱坐標為yc,求yc的最大值,此時l上有兩點(x1,y1),(x2,y2),其中x1>x2≥0,比較y1與y1的大;
(3)當線段OA被l只分為兩部分,且這兩部分的比是1:4時,求h的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,四邊形ACDE是平行四邊形,連結CE交AD于點F,連結BD交CE于點G,連結BE. 下列結論中:① CE=BD; ②△ADC是等腰直角三角形;
③∠ADB=∠AEB; ④ CD·AE=EF·CG;
一定正確的結論有
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】菱形ABCD中, ,其周長為32,則菱形面積為____________.
【答案】
【解析】分析:根據(jù)菱形的性質(zhì)易得AB=BC=CD=DA=8,AC⊥BD, OA=OC,OB=OD,再判定△ABD為等邊三角形,根據(jù)等邊三角形的性質(zhì)可得AB=BD=8,從而得OB=4,在Rt△AOB中,根據(jù)勾股定理可得OA=4,繼而求得AC=2AO=,再由菱形的面積公式即可求得菱形ABCD的面積.
詳解:∵菱形ABCD中,其周長為32,
∴AB=BC=CD=DA=8,AC⊥BD, OA=OC,OB=OD,
∵,
∴△ABD為等邊三角形,
∴AB=BD=8,
∴OB=4,
在Rt△AOB中,OB=4,AB=8,
根據(jù)勾股定理可得OA=4,
∴AC=2AO=,
∴菱形ABCD的面積為: =.
點睛:本題考查了菱形性質(zhì):1.菱形的四個邊都相等;2.菱形對角線相互垂直平分,并且每一組對角線平分一組對角;3.菱形面積公式=對角線乘積的一半.
【題型】填空題
【結束】
17
【題目】如圖,在△ABC中, , AC=BC=3, 將△ABC折疊,使點A落在BC 邊上的點D處,EF為折痕,若AE=2,則的值為_____________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,AC為對角線,點E,F分別在AB,AD上,BE=DF,連接EF.
(1)求證:AC⊥EF;
(2)延長EF交CD的延長線于點G,連接BD交AC于點O,若BD=4,tanG=,求AO的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com