如圖,在ABCD中,O是對角線AC的中點,過點O作AC的垂線與邊AD、BC分別交于E、F.四邊形AFCE是菱形嗎?請說明理由.

 

 

 

【答案】

解:是菱形 ,理由如下:

 四邊形ABCD為平行四邊形;

 AD∥BC

 ∠EAO =∠FCO

  EF⊥AC于O

 ∠AOE =∠COF

  AO=CO

 △AOE ≌ △COF (ASA)

 EO=FO

四邊形AFCE為菱形(對角線互相垂直且平分的四邊形為菱形).

【解析】根據(jù)平行四邊形性質(zhì)推出AD∥BC,根據(jù)平行線的性質(zhì)可得∠EAO =∠FCO,再有對頂角∠AOE =∠COF,AO=CO根據(jù)“AAS”推出△AOE≌△COF,即有EO=FO,加上AO=CO,可先判斷四邊形AFCE是平行四邊形,再有EF⊥AC,則四邊形AFCE是菱形.

 

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在?ABCD中,對角線AC、BD相交于點O,AB=
29
,AC=4,BD=10.
問:(1)AC與BD有什么位置關(guān)系?說明理由.
(2)四邊形ABCD是菱形嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

18、如圖,在?ABCD中,∠A的平分線交BC于點E,若AB=10cm,AD=14cm,則EC=
4
cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•長春一模)感知:如圖①,在菱形ABCD中,AB=BD,點E、F分別在邊AB、AD上.若AE=DF,易知△ADE≌△DBF.
探究:如圖②,在菱形ABCD中,AB=BD,點E、F分別在BA、AD的延長線上.若AE=DF,△ADE與△DBF是否全等?如果全等,請證明;如果不全等,請說明理由.
拓展:如圖③,在?ABCD中,AD=BD,點O是AD邊的垂直平分線與BD的交點,點E、F分別在OA、AD的延長線上.若AE=DF,∠ADB=50°,∠AFB=32°,求∠ADE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2011•犍為縣模擬)甲題:已知關(guān)于x的一元二次方程x2=2(1-m)x-m2的兩實數(shù)根為x1,x2
(1)求m的取值范圍;
(2)設y=x1+x2,當y取得最小值時,求相應m的值,并求出最小值.
乙題:如圖,在?ABCD中,BE⊥AD于點E,BF⊥CD于點F,AC與BE、BF分別交于點G,H.
(1)求證:△BAE∽△BCF.
(2)若BG=BH,求證:四邊形ABCD是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在?ABCD中,∠ADB=90°,CA=10,DB=6,OE⊥AC于點O,連接CE,則△CBE的周長是
2
13
+4
2
13
+4

查看答案和解析>>

同步練習冊答案